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Abstract: A new solution of the smart resistance sensor 

with the Two-Center Basis Function (TCBF) neural 
classifier, for which the resistance sensor is a component of 
an anti-aliasing filter of an ADC is proposed. The 
temperature measurement procedure is based on excitation 
of the filter by square impulses, sampling time response of 
the filter and processing measured voltage values by the 
TCBF classifier. All steps of the measurement procedure can 
be realized by the microcontroller and its internal devices. 
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1. INTRODUCTION 

At present, more and more sensors are produced as smart 
sensors in one chip with digital interfaces. But, e.g. many 
temperature sensors cannot be made in this technology, what 
follows from the limited range of operating temperature of 
the chip. Hence, resistance sensors (e.g. the Pt100), or 
thermocouples are still used. 

In typical measurement applications of resistance 
sensors, the resistance is measured on the basis of resistance 
bridges and high resolution Σ-Δ ADCs [1], or with use of 
circuits in which the sensor is stimulated by a DC current 
source and the voltage on the sensor is amplified, filtered 
and next measured by an ADC [2]. These applications are 
complex and they are not very suitable for simple 
measurement systems with a battery power supply, often 
working as endpoints in wireless sensor networks. 

Obviously, there are solutions for which resistive sensors 
[3,4], differential resistive sensors [5] and resistive sensor 
bridges [6,7] are directly connected to a microcontroller 
without any intermediate active components. In all these 
cases resistance measurements are burdened with high 
uncertainty, which follows from parameters of the 
microcontroller pin and influence of disturbances, because 
the measurement circuit is not equipped with an anti-
aliasing filter. Therefore, a new compact smart resistance 
sensor with the TCBF neural classifier [8] with 
identification purposes is proposed in the paper. 

The main idea of the new method depends on placement 
of the resistance sensor in the structure of the anti-aliasing 
filter of the ADC [9] and obtaining information about 
temperature from expanded TCBF classifier with parameter 
identification capabilities. 

2. THE ARCHITECTURE OF THE SENSOR 

The microcontroller is the main part of the sensor. Its 
internal 8-bit timer controls the duration time of two square 
impulses, which excite the 2nd-order low-pass Sallen-Key 
filter with the gain equal to 3 (Fig. 1). The excitation signal 
is generated on the OC0 pin. It passes through the inverter 
built from an IRF7105PBF. 

 
Fig. 1. A compact smart resistance sensor  

controlled by the microcontroller. 

As an example of the resistance sensor the Pt100 sensor 
is used, marked as R1. Hence, nominal values of the anti-
aliasing filter are the following: R1 (Pt100) = 110 Ω, what 
corresponds to about 26 oC (according to PN-EN 
60751+A2), R2 = 110 Ω, R3 = 20 kΩ, R4 = 10 kΩ, 
C1 = 2,038 μF, C2 = 1,022 μF. It is assumed that values of 
R1 change from 0.2 to 3 of its nominal value, what 
corresponds to temperatures from about –192 oC to 651 oC. 

The time response of the anti-aliasing filter for the first 
square impulse is sampled by the internal 10-bit ADC at 
moment t1 (the u(t1) sample) and for the second one at 
moment t2 (the u(t2) sample) established by the 16-bit timer, 
as in [9]. The samples u(t1) and u(t2) are treated as coordina-
tes of the measurement point x and are applied to the input 
of the TCBF classifier in order to determine the temperature. 



3. THE TCBF DESCRIPTION 

The main reason of introduction of TCBF follows from 
the fact that usage of conventional one-center Basis 
Functions, either in Radial (RBF) or Ellipsoidal (EBF) form, 
in microcontroller based systems is difficult due to high 
memory demands of RBF and EBF classifiers designed for 
diagnostic purposes [10]. The problem is especially 
noticeable in detection of parametric faults. These faults are 
caused by variations of one or more technical object’s 
parameters outside tolerance range and are represented in a 
measurement space in the form of a family of identification 
curves [10]. Assumption of disturbances, measurement 
errors and parameter tolerances causes dispersion of these 
curves and requires usage of neural classifiers with 
generalization capabilities. As an example, a family of 
dispersed identification curves for the anti-aliasing filter 
used in the smart resistance sensor is shown in Fig. 2. 
Voltage samples u(t1) and u(t2) are coordinates of the 
measurement space. Parametric faults in the range ± 50 % 
with reference to nominal values and parameter tolerances 
not greater than 2 % were assumed. 

 
Fig. 2. Exemplary family of dispersed identification curves. 

Since a shape of a dispersed identification curve has the 
form of a highly stretched cluster, its transformation by 
hidden layer neurons of RBF or EBF neural classifier 
requires application of many basis functions. High memory 
demands of these classifiers can be decreased at the cost of 
slightly increased computational complexity with use of 
TCBFs, which are used in place of RBFs or EBFs. 

The TCBF maps the space around a line segment with 
endpoints c(1) and c(2) with the following equation [8]: 
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where: x = [x1, …, xn] is an input vector (in our case n = 2, 
x1 = u(t1), x2 = u(t2)), w(x) = [w1(x), …, wn(x)] are center 
functions depending on coordinates of centers c(1) and c(2), 
s(x) is a scaling function describing the identification curve 
dispersion changing form σ1 in c(1) to σ2 in c(2) and 
C = [cij]n×n is a scaling matrix. Exemplary TCBF with 
parameters: c(1) = (–2, 0), c(2) = (2, 2), σ1 = 1, σ2 = 1.25, 
c11 = c22 = 1.28, c12 = c21 = 0.28 in 2-dimensional space with 
coordinates x1 and x2 is shown in Fig. 3. 

The TCBF calculation algorithm presented in Fig. 4 
indicates that in order to obtain value of TCBF one should 
evaluate additional normalizing function h(x). The method 
depends on relation between values σ1 and σ2. If σ1 = σ2 
then the following equation is used [8]: 
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Otherwise, if σ1 ≠ σ2, the normalizing function h(x) is 
evaluated from the equation [8] 
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where c(0) is the apex of the elliptic cone into which two 
ellipsoids f1(x) and f2(x) are inscribed, as discussed in [8]. 

The task of the function h(x) in the first case (σ1 = σ2) is 
to normalize distance between two parallel hyperplanes π1 
and π2, which cross centres c(1) and c(2). However in the 
second case (σ1 ≠ σ2) function h(x) normalizes distance 
between ellipsoids f1(x) and f2(x). 

 
Fig. 3. The exemplary Two-Center Basis Function. 
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Fig. 4. The TCBF calculation algorithm. 



4. THE TCBF CLASSIFIER 

A set of TCBFs can be used as hidden layer neurons in a 
TCBF classifier destined for detection and localization of 
parametric faults in a technical object under test. The 
architecture of the classifier is presented in Fig. 5. 
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Fig. 5. The architecture of the TCBF classifier. 

The classifier has two layers of neurons. TCBFs are 
placed in the hidden layer and are assigned to identification 
curves. Each neuron in the output layer marked as Mk 
(0 ≤ k ≤ K) produce maximum value of all TCBFs outputs 
assigned to identification curve k. Hence, an element yk in 
the output vector y = [y1, …, yK] gives an information about 
a distance in the n-dimensional space between the point x 
and the identification curve k. This information is given as a 
value in the range (0, 1]. If the point x is placed near the 
identification curve k then value of yk is close to 1. The 
value yk decreases to 0, if point x is distant from the curve. 

Information about the state of the object under test can 
be obtained by analysing values in the output vector y of the 
classifier as was described in [11]. The TCBF classifier is 
able to detect if the object is fault-free or faulty and in 
second case distinguish single parametric fault, ambiguity 
group and multiple fault. 

5. TEMPERATURE IDENTIFICATION 

The classifier shown in Fig. 5 needs to be expanded in 
order to enable identification of parameters of an object. For 
simplicity we assume situation where only one parameter R1 
(Pt100) of an object must be identified. The architecture of 
the new expanded TCBF classifier with parameter 
identification capability is presented in Fig. 6. 
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Fig. 6. The architecture of the expanded TCBF classifier 

with parameter identification functionality. 

The classifier takes advantage of normalizing functions 
of TCBFs. Even though h(x) is only an intermediate 
function in TCBF calculation algorithm, it has a property 
which can be useful in parameter identification. It follows 
from the fact that h(x) describes position of a point x with 
reference to centers of a TCBF. The value is in the range 
from 0 to 1. If we assign one of object’s parameter values to 
both centers of a TCBF than an actual parameter value for 
point x can be easily established e.g. through linear 
interpolation. 

A construction procedure of the new classifier will be 
discussed on the basis of temperature identification problem in 
a compact smart resistance sensor with the anti-aliasing filter. 

At the before-test stage, performed by simulation, the 
nominal identification curve for R1 is evaluated according to 
the rules described in [12,13]. This curve illustrates state of 
the nominal anti-aliasing filter followed from changes of R1 
(the red curve shown in Fig. 7). Relation between points on 
the curve and temperature is defined by PN-EN 60751+A2. 
It can be used in an analytical way or through a conversion 
table consisting of a set of points: {(V1, V2) → T}. The 
nominal curve is then divided into several sections in order 
to obtain a set of M points required to construct a classifier 
with M – 1 TCBFs. Obtained centers in the measurement 
space represented by digital codes of a 10-bit analog-to-
digital converter are shown as red points in Fig. 7. 

 
Fig. 7. Nominal and dispersed identification curve  
of parameter R1 (Pt100) in the measurement space. 

In the next step parameter tolerances in the anti-aliasing 
filter are introduced and a dispersed curve is generated (the 
yellow strip in Fig. 7). This curve is used to obtain scaling 
parameters σ and matrices C of TCBFs by means of 
statistical analysis [8]. 

At the after-test stage, for a measurement point x output 
values ym(x) of TCBFs are evaluated (m = 1, 2, ..., M – 1) 
and applied to inputs of a block marked as IDM in Fig. 6. Its 
task depends on obtaining an index a of a TCBF with the 
greatest output value (a = 1, 2, ..., M – 1). This index firstly 
controls multiplexer (MUX) used for selection of the 
normalizing function value ha(x) of the winning TCBF. 
Secondly, it is combined with ha(x) in a summing block. As 
a result we obtain a new identification function 
p(x, a) = a + ha(x). Since a value of ha(x) is in the range 
[0, 1], the new function is continuous in the range [1, M]. 
Finally, by means of an interpolation method, an actual 
temperature value T = f( p(x, a)) can be obtained. 



6. SIMULATION RESULTS 

A set of 9 centers on nominal identification curve of the 
parameter R1 was obtained for the anti-aliasing filter shown 
in Fig. 1. Hence, there are eight TCBFs in the architecture of 
the expanded TCBF classifier and value of the identification 
function p(x, a) ranges from 1 to 9 indicating position of the 
measurement point x with respect to the identification curve. 
Theoretical relation between temperature and value of the 
function p(x, a) is presented in Fig. 8. 

 
Fig. 8. Temperature value versus function p(x, a). 

Different interpolation methods of the curve 
T = f( p(x, a)) were compared in order to find out the lowest 
temperature identification errors. Nominal and dispersed 
identification curves were examined. Parameter tolerances 
0.1 % for resistors and 0.2 % for capacitors were assumed. 
Results shown in Fig. 9 indicates that the highest 
temperature identification errors occurs with use of linear 
interpolation method for the last TCBF. It follows from the 
fact that the curve T = f( p(x, a)) in this area is clearly 
nonlinear. The most even error level was obtained with use 
of a spline method. However for some TCBFs (e.g. 1st, 3rd) 
obtained errors are greater than with use of other methods. 

 
Fig. 9. Temperature error versus function p(x, a) of the 
classifier with 8 TCBFs for 850 simulations of different 

values of R1 (tolR = 0.1 %, tolC = 0.2 %). 

Preliminary simulations with three basic interpolation 
methods gave moderate results. In order to increase 
accuracy in the next step an approximation method with use 
of higher order polynomials obtained independently for each 
TCBF were applied. For parameters tolerances not greater 
than 0.2 % standard deviation of estimated temperature for 
the testing set containing 850 signatures equals 1 oC. 

7. CONCLUSIONS 

Presented solution with the resistance sensor embedded 
into the structure of an anti-aliasing filter of an ADC is an 
alternative for typical complex temperature measurement 
methods and is dedicated to low-power and low-cost 
applications. Temperature estimation accuracy achieved 
with use of the expanded TCBF classifier with parameter 
identification functionality, implemented algorithmically in 
the microcontroller, should be sufficient in applications 
where sensor must operate in a wide range of temperatures, 
but accuracy of parameter identification is a less critical 
parameter. 
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