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Abstract: Electromechanical analysis and simulation of 

traction systems are required to estimate the power 

consumption and the best optimization for energy saving. 

The number of variables and parameters (mechanical and 

electrical) is huge and they are deemed by a high degree of 

uncertainty. The sensitivity of the mechanical equations to 

the track and train parameters is considered, as well as the 

spread of the output variables. 

Keywords: Davis equation, Electromechanical 
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1.  INTRODUCTION 

Electromechanical simulation of electric transportation 

systems has several applications: during design, the sizing 

and rating of electric substations, of traction supply 

conductors and supply feeders and the optimization of the 

feeding points, with respect to the maximum absorbed 

power and the tolerated supply voltage drops along the line; 

moreover, under major system revamping and 

modernization, the calculations may be repeated to push 

optimization even further, reducing power absorption peaks, 

resizing some feeders and conductors, adjusting the time 

table and train scheduling. In general, also with the aim of 

optimizing the power consumption and demonstrating 

overall system efficiency, electromechanical simulation is a 

precious tool to support direct measurements. 

The validation of an electromechanical simulator is 

based at last on the direct comparison of simulator outputs 

with experimental data. One of the goals of the simulation is 

the evaluation of the overall system efficiency and a fraction 

of % on the evaluated system efficiency can really bring to 

tangible differences in terms of money, if the involved 

power consumption terms of a whole railway or metro 

system are taken in the due consideration. This translates 

into a demanding requisite concerning the overall simulator 

accuracy and analogously, the same accuracy is required 

when measurements are designed and performed on the 

system. A big effort is necessary to limit and to cover 

comprehensively the system under measurement. Second, 

the used sensors, instruments and measurement techniques 

must ensure an adequate accuracy, that is barely achievable 

for electrical variables (voltages and currents at substations 

and on trains), but represents a major difficulty for the 

evaluation of mechanical variables. 

In this first work the attention is focused on the 

mechanical equations, on the relationships between 

variables and coefficients and on how their values are 

determined with reference to experimental results and 

published data. The goal is the identification of the intrinsic 

uncertainties, related to the quantification of equations 

coefficients and to the determination of the most influencing 

parameters, with the aim of designing the correct 

experimental activities. For this reason the expression of the 

mechanical train resistance and its terms are analyzed, 

defining the parameters and the input data and the 

uncertainties related to their determination. It is quite 

common in reality that several data are known only in 

tabular form and that the adopted values are average values 

for a similar type of train consist or track. For this reason the 

present analysis focuses on the identification of the most 

relevant parameters and data in terms of sensitivity and 

spread. 

2.  TRAIN RESISTANCE FORCE AND GENERAL 

FORMULATION 

The train resistance force R is approximated by a 

quadratic function that is variously known as the “von 

Borries Formel”, the “Leitzmann Formel”, the “fonction de 

Barbier” and, in the Anglo-Saxon world, the “Davis 

equation” [1]: 

 2CvBvAR ++=  (1) 

The coefficients A and B include the mechanical 

resistances and depend on the train mass, so that at lower 

speed (≤ 30 m/s, that is about 100 km/h) the resistance force 

R is mainly dependent on the train mass. At higher speed, 

the Cv
2
 term related to the aerodynamic resistance becomes 

dominant. The values of the coefficients in (1) are usually 

set for open air conditions and require modification for the 

tunnel environment, where the C term, in particular, is larger. 

Armstrong and Swift [2] proposed a set of empirical 

expressions to determine the coefficients A, B and C of the 

Davis equation for the electric multiple units (EMU) in 

service at that time on the former British Rail lines. The 

coefficients A, B, C in (1) are put in relationship with the 

following constants: 
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where: 

mTC in tons is the total mass of trailer cars; 

mPC in tons is the total mass of power cars; 

m in tons is the train mass; 

nTC is the number of trailer cars; 

nPT is the number of power cars; 

P in kW is the total power; 

Cx is the head/tail drag coefficient; 

S in m
2
 is the cross-sectional area; 

d in m is the perimeter; 

l in m is the train length; 

Ig in m is the inter-vehicle gap; 

Cx
B
 is the bogie drag coefficient; 

nB is the number of bogies; 

nP is the number of pantographs. 

 

The units of the empirical coefficients a1 to c5 are chosen 

to results in the correct units for A, B and C, e.g. c3 is in [N 

s
2
/m

3
]. Armstrong and Swift provide values for a1 to c5 that 

lead to the following expression: 

A = 6.4 mTC + 8.0 mPC 

B = 0.18 m + 1 nTC + 0.005 nPC P 

C = 0.6125 Cx S + 0.00197 d l + 

+ 0.0021 d Ig (nTC + nPC – 1) + 

+ 0.2061 Cx
B
 nB + 0.2566 nP 

 

Rochard and Schmid provide in [1] a validation of the 

above equations (1) to (4), using data obtained by SNCF as 

a result of run-down tests and reported by M. de la Broise 

[1], for the Class 373 Eurostar train. 

Different authors [1-4] in recent years have described the 

approaches of various national railway undertakings to the 

calculation of train resistance. Most of them are empirically 

modified versions of the Davis equation and include 

coefficient related to particular types of rolling stock, 

putting coefficient A, B and C in relationship with different 

figures not considered in Armstrong-Swift equations (such 

as the number of axles and the axle load). 

3.  ANALISYS OF THE DAVIS COEFFICIENTS 

The terms of (1) are further analyzed in the following, 

with particular reference to their relationship with train and 

track characteristic, non idealities, dependency of speed 

itself and possibility of experimental determination and 

related accuracy. 

3.1 Term A of Davis equation 

The first term, A, of the Davis equation (1) is purely 

mass dependent; from the tests reported in [3][4] the term A 

is approximately linear with respect to the number of axles 

and the running resistance increases approximately linearly 

and only slightly with the increasing axle load. It is 

reasonable to expect that the term A, as well as the other 

mass-related coefficient B below, should depend upon track 

construction and maintenance standards. However, it is very 

difficult to determine how the track type influences the 

coefficient A, because of the number of variables involved in 

the numerical quantification of the track. 

3.2 Term B of Davis equation 

The influence of several system parameters on the value 

of the term B is reviewed here below: 

• Influence of train mass and train length: the 

coefficient B is normally expressed as a function of 

train mass [3]. However, from tests reported in [4], 

where the axle load was varied for the same train 

configurations, no systematic variation in coefficient 

B, due to axle load, was observed. This may indicate 

that the main part of this coefficient is not due to the 

mechanical resistance, but rather originates from 

portions of air drag not covered by the term Cv
2
. 

Coefficient B then may be expressed as a function of 

the total train length rather than the train mass. 

• Influence of track type: from test covered in [4] it is 

not possible to conclude that changes in B originate 

from the difference in track type; however according 

to Davis [5] concussion and swaying of the vehicles 

contribute to B. 

• Influence of air momentum drag: a train set ingests 

air for cooling and ventilation and this causes 

additional air momentum drag [6]. According to 

Gawthorpe [3], the contribution to the resistance 

from the air momentum drag of a locomotive is 

calculated in Newton as: 

 v
td

dV
F in
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where: 

ρ in kg/m
3
 is the density of air; 

Vint in m is the volume of air intake by the cooling 

and ventilation system. 

• The air density ρ is about 1.3 kg/m
3
 at 0 ºC and 1013 

hPa, therefore – especially for non high-speed and 

freight trains – the variation of coefficient B due to 

air momentum drag is only some percent of the total 

running resistance (e.g. about 600 N for train moving 

at 30 m/s) and is hard to distinguish. 

3.3 Term C of Davis equation 

The aerodynamic drag (the part which is dependent upon 

speed squared) is usually expressed in Newton for no wind 

conditions as: 

 
22

2
1 )( CvvlCCAF spfD =+ρ=  (6) 

where: 

Af in m
2
 is the projected cross-section area; 

Cp is the total mean front pressure and rear suction drag 

coefficient; 

Cs is the total mean pressure and friction drag coefficient 

along the train; 

l in m is the train length. 

 



It is convenient to express the coefficient C as air drag 

area CDAf in m
2
 [7]: 

 ρ=+= /2)( CAlCCAC fspfD  (7) 

The results reported in [4] reveal that the aerodynamic 

drag for passengers and freight trains increases 

approximately linearly with length (this is also supported by 

Hammit [7]). By means of the method of least squares, a 

line is fitted to the wind average results of CDAf, giving: 

CDAf ≈ 8.3 + 0.057 l for conventional passengers trains; 

CDAf ≈ 4.7 + 0.050 l for high speed trains; 

CDAf ≈ 8.2 + 0.133 l for freight trains of mixed consist. 

The first constant term expresses the contribution to the 

pressure and suction drag, acting on the front and rear of a 

train [7]; the drag contribution from pantograph and roof 

equipment of the loco is also included. The linear term 

originates from the skin friction and pressure effects along 

the train. 

3.4 Other resistance terms 

In addition to the three friction forces originated by the 

mass, viscous component of mass and aerodynamic 

characteristic described by (1), the traction equipment of 

trains also has to overcome the resistance to acceleration, 

gradient force and curving resistance. 

Acceleration is simply a function of the masses with the 

necessary allowance for the rotating components (also 

known as rotary allowance), while curving is highly 

dependent on wheel and rail profiles, track cant and the 

geometry of the vehicle concerned. 

3.4.1 Gradient resistance 

The gradient force is mass-related and can be added as 

an equivalent linear force: 

 mgiRslope =  (8) 

where: 

m in kg is the mass of the train; 

g in m/s
2
 is the gravity acceleration; 

i in % is the track grade (slope). 

 

The grade i can be expressed as: 

 i = 100 tan(α) = 100 ∆y/∆x (9) 

where: 

α in rad is the slope angle; 

∆y in m is the rise; 

∆x in m is the horizontal run. 

3.4.2 Resistance due to track curvature 

The curve resistance is an estimate of the added 

resistance a vehicle has to overcome when operating through 

a horizontal curve. The exact details of the mechanics 

contributing to curve resistance are not easy to define. The 

effects of resistance due to track curvature are small for 

curves with radius larger than 250 m. 

A common formula for calculating the resistance due to 

track curvature, provided by Profillidis [8], is 
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where: 

rc in kN/t is the specific resistance force, assuming that 

the gravity acceleration is 10 m/s
2
; 

k is a dimensionless parameter, depending on the train 

design and varying in general from 500 to 1200; 

Rc in m is the curve radius in a horizontal plane. 

However it is generally accepted in the railway industry 

that the curve resistance is approximately the same as a 

0.04% up grade per degree of curvature for standard gauge 

tracks [9]. At very slow speed (up to 5 km/h) the curve 

resistance is closer to 0.05% up grade per degree of curve. 

4.  VARIABILITY OF MECHANICAL EQUATIONS 

Using Armstrong-Swift’s equations (2) to (4) to 

calculate the coefficients A, B and C of the Davis equation, 

the effects of varying train parameters are investigated. The 

sensitivity of the mechanical equations to the train 

parameters is considered, as well as the spread of the output 

variables. Then the same equations are also compared to 

those proposed in the past and still used in France, Germany 

and Japan, with slightly different assumptions and 

identification of the input parameters. 

4.1 Sensitivity analysis 

A Series 100 Shinkansen and a Class 373 Eurostar are 

used as the reference systems; the sensitivity analysis is 

performed around their nominal values reported below in 

Table 1, over a speed range from 0 to 300 km/h. The 

sensitivity is evaluated by a Monte Carlo approach with the 

variations applied by a random fractional change around the 

nominal value with a uniform distribution. The extremes of 

the distribution are fixed so to have two normalized 

dispersion values, 1% (for an analysis around a fixed 

operating point) and 20% (for an analysis that includes also 

the effects of the non-linear terms of (2) to (4)). 

Table 1. Comparison of Armstrong-Swift equation input data for 

Series 100 Shinkansen and Class 373 Eurostar. 

Parameter Series 100 Class 373 

Length l [m] 402 394 

Mass of power cars mPC [t] 672 137 

Mass of trailer cars mTC [t] 184 730 

Total mass m [t] 856 867 

Power P [MW] 11.04 12 

Number of power cars nPC 12 2 

Number of trailer cars nTC 4 18 

Cross-sectional area S [m2] 12.6 8.9 

Perimeter d [m] 14.24 11.24 

Number of pantographs nP 3 2 

Head drag coefficient Cx 0.075 0.0702 

Tail drag coefficient Cx
B 0.075 0.0743 

 

Fig. 1 shows the histograms of A, B and C coefficients 

for a uniform distribution with 1% dispersion of the 

coefficients after (4), except integer coefficients nTC, nPT, nB, 

nP held constant (a 1% dispersion on an integer variable in 



the range of up to some tens is not relevant and doesn’t 

change the value of the coefficients themselves). 
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Figure 1. Histograms of A, B and C coefficients for a normalized 

1% dispersion of all parameters except nTC, nPT, nB, nP 

The probability density functions (pdfs) of the A and B 

coefficients are trapezoidal distributions, as evident by 

observing (2) and (3), where the resulting coefficient is the 

sum of two terms with a uniform distribution. The third pdf 

of the C coefficient resembles a Normal distribution, but it 

will be shown in the next figure that it is a skewed 

distribution similar to a Weibull distribution. 

In Fig. 2 all the assumed uniform distributions are 

characterized by a twenty times larger dispersion, including 

the integer parameters, neglected in the first analysis. 
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Figure 2. Histograms of A, B and C coefficients for a normalized 

20% dispersion of all parameters including nTC, nPT, nB, nP 



Fig. 2(c) is showing a skewed distribution, already 

visible in Fig. 1(c) for a 1% only dispersion. What is 

interesting to see is the effect of the two integer variables 

nTC and nPC, modelled as random variables only in the case 

of 20% dispersion of Fig. 2(c): for the smaller 1% dispersion 

the two integer variables are considered constant, being the 

applied random changes masked by the round-off. 

The pdf of the coefficient B shown in Fig. 2(b) takes a 

triangular shape, while in Fig. 1(b) the pdf was very narrow 

around the average value, because the influence of the 1% 

dispersion of the only random variable in B expression was 

weak. 

4.2 Comparison of equivalent formulations 

The results of the Armstrong-Swift approach applied to 

the Davis equation are further compared with the results of 

other empirically or semi-empirically formulae commonly 

used in France and Germany to calculate the resistance to 

motion of trains [8]. This part of the analysis gives a direct 

estimation of the dispersion of results due to different 

assumptions and interpretations of available data and 

parameters. We could identify the resulting dispersion as an 

“operative” spread of results, while the Monte Carlo 

simulations lead to a “theoretical” spread (and to the 

evaluation of the sensitivity). 

Two trains are considered in Fig. 3 with different 

characteristics: a British Class 444 suburban train of the 

EMU type and a European Class 373 Eurostar high speed 

train. The curves of the resistance to motion in kN are 

calculated and plotted versus speed from standstill to the 

maximum commercial speed. The curves are characterized 

by slightly different values and slopes, so that there is in 

general no definitely overestimating and underestimating 

curve at all speed values. 

The spread of the curves at the end of the respective 

speed intervals for the largest speed values is practically due 

to the fact that the parameters for a train class are normally 

derived from approximations and interpolation of 

experimental data, mostly valid and accurate at the center of 

the speed intervals. 
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Figure 3. Curves of resistance to motion calculated for the same 

train with different formulations: (a) suburban train Class 444, (b) 

high speed train Class 373 

Fig. 3 shows that the spread of the results is 20-30% on 

average. A more accurate estimate is shown in Table 2 and 3, 

where the difference in percentage with respect to the 

Armstrong-Swift equation (taken as reference) is reported 

for the two trains. 

Table 2. Comparison of Armstrong-Swift equation and other formulations for Class 444 suburban train. 

Speed [km/h] 
Used formulation 

30 50 70 80 100 120 150 180 

Armstrong-Swift [kN] 2.56 3.78 5.38 6.35 8.60 11.27 16.09 19.84 

SNCF formula % 42.5 24.1 10.2 4.9 -3.5 -9.5 -15.7 -18.7 

SNCF formula suburban % 57.6 42.3 31.3 27.1 20.7 16.2 11.6 9.4 

Sauthoff formula % 7.7 -0.8 -6.8 -9.0 -12.3 -14.6 -17.0 -18.0 

Table 3. Comparison of Armstrong-Swift equation and other formulations for Class 373 Eurostar. 

Speed [km/h] 
Used formulation 

30 50 70 80 100 120 150 180 200 250 300 330 

Armstrong-Swift [kN] 9.24 12.69 17.04 19.56 25.28 31.91 43.55 57.23 67.48 97.09 132.37 156.26 

SNCF formula % 50.2 35.2 24.4 20.2 13.7 8.8 3.7 0.1 -1.6 -4.8 -6.8 -7.7 

SNCF formula suburban % 62.4 47.8 37.9 34.3 28.7 24.8 20.8 18.3 17.0 15.0 13.8 13.3 

Sauthoff formula % 135.3 94.6 68.4 58.9 45.1 35.8 26.9 21.6 19.2 15.5 13.7 13.1 

 



By observing the relative difference with respect to 

Armstrong-Swift formulation shown in Table 2 and 3 above, 

it may be concluded that the other formulations show a 

spread of the average difference of +80% and –9%, 

indicating that the Armstrong-Swift formulation in the Davis 

equation represents a lower bound of the resistance to 

motion estimation. This statement does not mean that this 

formulation is not enough conservative, since the present 

study has been performed in terms of sensitivity and 

dispersion, without posing the question of the determination 

of the “real” resistance to motion. 

5.  CONCLUSIONS 

In the present work an overview of the phenomena and 

equations related to the mechanical motion of a train are 

presented. The electromechanical analysis and simulation of 

traction systems of various kinds (heavy and light railways, 

metros, etc.) are required to estimate the power consumption 

and where optimization can be applied more profitably for 

energy savings. Energy efficiency has been the target of a 

great research effort all over the world; large traction 

systems are subject to a huge number of variables 

(mechanical and electrical), an intrinsic difficulty in the 

identification of system boundaries and related power flows, 

and a high degree of uncertainty, in particular on mechanical 

variables and parameters. 

Here the sensitivity of the mechanical equations to the 

set of parameters describing the track and the trains was 

considered, together with the spread of the output variables 

for typical variations of the input parameters. Two different 

dispersions were applied (1% and 20%) to the assumed 

uniform distributions, the latter case including also integer 

parameters. Some considerations are derived in this case on 

the shape of the resulting probability density functions of the 

coefficients of the commonly used resistance to motion 

expression by Armstrong and Swift [2]. Moreover, 

alternative formulations and the dispersion of results are 

then considered for two trainsets used as the reference cases: 

the resulting dispersion is an indication of the expected 

variability in real cases [10]. 

It is easy to see that mechanical phenomena play a major 

role in terms of uncertainty due to the dispersion of the 

relevant parameters (e.g. non constant values or scarcely 

know values). So, to the aim of the electromechanical 

simulation and estimation of energy efficiency, the 

modeling of the electrical supply system and the related 

uncertainties are of less significance, in particular if the so 

called “hot path” (the catenary and the overall return circuit) 

is considered [11][12]. In this case the system is adequately 

modeled even if a simplifying approach by means of 

reduced number of conductors is followed [13][14]. 
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