
XVII IMEKO World Congress
Metrology in the 3rd Millennium

June 22−27, 2003, Dubrovnik, Croatia

A SELF-TESTING APPROACH TO TESTING OF MIXED ANALOG-
DIGITAL MICROSYSTEMS BASED ON MICROCONTROLLERS

Zbigniew Czaja

Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics,

Department of Electronic Measurements

Abstract −A new approach based on the 4D method

[1,2] is proposed to self-testing of analog networks (circuits)
of mixed analog-digital microsystems controlled by
microcontrollers. It is characterised by simplicity and
facility of the implementation of diagnosis algorithms in
simple and popular microcontrollers. In the paper the
creation of a fault dictionary and self-testing procedures of
analog networks (single soft fault detection and localisation)
for these microsystems are described.

Keywords: self-testing, diagnosis methods, micro-
systems, microcontrollers.

1. INTRODUCTION

At present more and more electronic devices and

microsystems consist of a digital part, used for control and
processing data, and an analog part mostly used for
adjustment of input signals from sensors and output signals
to actuators (mixed analog-digital microsystems). Hence,
new self-testing methods of these microsystems, especially
for analog parts, are needed.

In many cases, a microprocessor or a microcontroller
controls the work of these microsystems. Therefore, together
with a main program code, we can contain in it self-testing
procedures. The procedures should be realised not only in
signal microprocessors, but also in simple, cheap and
popular microcontrollers generally applied in practice.

Hence, a new implementation of the diagnostic 4D
method [1,2], which satisfies above requirements for self-
testing of the analog part of the mixed analog-digital
microsystem is presented. It is illustrated on the example of
a microsystem based on the microcontroller PIC16F877 [3].
This is an embedded microcontroller with RISC CPU (35
single word instructions). It contains up to 8K x 14 words of
FLASH Program Memory, up to 368 x 8 bytes of Data
Memory (RAM), up to 256 x 8 bytes of EEPROM Data
Memory and following peripheries: 8-bit Timer0, 16-bit
Timer1 and Timer2, two Capture, Compare, PWM modules,
10-bit multi-channel Analog-to-Digital converter,
Synchronous Serial Port with SPI and I2C, USART module
and Parallel Slave Port.

2. THE 4D METHOD

The fault diagnosis via the 4D method consists of two
stages. In the first pre-testing stage, a family of
identification curves is generated from the following
transformation [2]:

,))(Im())(Re(

))(Im())(Re()(
22

11

lk

ji

iiii

iiiiii

pFpF

pFpFpV

++

+= (1)

where: i, j, k, l – are versors, Re(·), Im(·) – real and
imaginary parts of the circuit functions F1 and F2.

Transformation (1) maps changes of analog circuit
component parameters pi (i=1,..,N, where: N – the number of
elements of the analog circuit) into the i-th identification
curve in four-dimensional space (4D). Because it is difficult
to present a 4D space in a figure, its two component planes
are represented by exemplary families of identification
curves for the analog networks (Fig. 1).

a) b)

Fig. 1. The family of identification curves of an analog network: a)

for the voltage transfer function Ku ,b) for the input admittance Yin

In the second stage, the real and imaginary part of two
circuit functions is measured. The result, as a measurement
point, is placed in this space. The affiliation of the
measurement point to the proper curve localises a single
fault. Additionally, if curves are scaled in suitable circuit
parameter values, localisation of the point on the curve
enables fault identification.

In practice analog network (circuit) elements have
tolerances. This causes fuzziness of the curves and they take
the form of identification stripes, as shown in Fig. 2.

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

a)

b)

Fig. 2. The family of identification stripes of the analog network:

a) for the voltage transfer function Ku , for the input
admittance Yin

These maps of identification stripes will be used to build

the fault dictionary of the analog network of the mixed
analog-digital microsystem.

3. THE DIAGNOSIS PROCEDURE BASED ON THE 4D

METHOD

The full diagnosis procedure consists of two stages, too.

In the first stage the fault dictionary is created on a personal
computer using Matlab. Next it is loaded to and saved by
serial EEPROM’s of the microsystem.

The second stage is self-testing of the analog networks.
The microcontroller, based on the measurement results and
on the fault dictionary, performs the fault detection.
Simultaneously, when the fault will appear, the
microcontroller localises it and informs about it the
microsystem. Otherwise the microcontroller goes to the
main program.

3.1. Methodology of the creation of the fault dictionary
An 8-bit accuracy of measurements of the real and

imaginary parts of two circuit functions is assumed. These
parts are normalised to a range of values from 0 to 255.

The investigated example of the analog network is a 3rd-
order low-pass filter consisting of 6 elements. The first

circuit function is the voltage transfer function Ku, the
second one is the input admittance Yin. They are measured
at the frequency of f=735Hz. 5% tolerance for capacitors
and 1% tolerance for resistors are assumed.

In the first step of fault dictionary creation for the analog
circuit the map of identification stripes is generated using
the transformation (1) and Monte Carlo method (Fig. 2).
Next, this map for each circuit functions is divided into 256
x 256 rectangular fields (pixels). Thus each pixel has xj co-
ordinate (ReFj(⋅)) and yj co-ordinate (ImFj(⋅)), where j=1,2 is
the index of circuit function used in transformation (1). Byte
representation of each pixel, and the same of the fault
dictionary for the separate function is assumed (separate for
Fig. 2a and Fig. 2b). Hence, a single bit of each byte in this
dictionary can be assigned to the fault (element). And so, the
bit number 0 means no fault if it is “1”, the bit number 1 is
assigned to a fault of the resistor R1, etc (It is assumed that
the number of circuit elements is less then 8, what is often
satisfied in practice for these circuits). The meaning of all
bits is shown in Fig. 3. When the pixel is contained in the
given identification strip, “1” is written to a position in the
byte represented the faulty element for which this strip was
created.

a)

b)

Fig. 3. Graphical representation of the fault dictionary:
a) for the voltage transfer function Ku , b) for the input

admittance Yin

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

In this way, for each circuit function we have a variable
which is a vector consisting of 65536 bytes. The variables
are used to generate two files.

It was assumed that a low byte of address is the real co-
ordinate x, and a high byte of the address is the imaginary
co-ordinate y for each byte in the files. So byte address is
described by the following formula: x + y*256, where x = 0,
1, .., 255 and y = 0, 1, .., 255.

For each circuit function the file with its fault dictionary
is loaded to an appropriate serial EEPROM with SPI
interface via RS-232 interface using functions implemented
in the microcontroller (Fig. 4). The fault dictionary of the
voltage transfer function Ku is there in chip U1, and the
fault dictionary of the input admittance Yin is there in chip
U2. A 64kB serial EEPROM with SPI was chosen (type
AT25HP512 of Atmel [4]).

Fig. 4. Example of the mixed analog-digital microsystem based

on the microcontroller PIC16F877 and with two SPI serial
EEPROMs the AT25HP512

3.2. Self-testing of analog networks
At the start of self-testing the real and imaginary parts of

two circuit functions are measured. The methodology of
these measurements will be presented in separate papers.
Here, it is assumed that these parts are normalised and
represented by single bytes, where ReF1, ImF1, ReF2, ImF2
are results of measurements of real and imaginary parts of
function F1 and F2 (the transfer function Ku and the input
admittance Yin at f=735Hz for the investigated example).

The fault detection and localisation procedure is the
following: the microcontroller via SPI interface reads a byte
from the first EEPROM at address (ImF1, ReF1) and a byte
from the second EEPROM at address (ImF2, ReF2). Next, it
operates a logical AND on these bytes. This operation
improves the localisation resolution (the property of the 4D
method [1,2]). If bit number 0 is set (“1”), the analog
network is fault-free, otherwise the network is faulty and
reading of remaining bytes enables fault localisation.

Details of the self-testing algorithm together with its
assembler code are presented below.

At the beginning of the assembler code indispensable
definitions are included. They deal with simplicity of code,
addresses of registers, definition of instruction set for the
AT25HP512 and definition of assembler constants

; main definitions
#define bank0 bcf status, rp0
#define bank1 bsf status, rp0
#define cs1 portd, 3
#define cs2 portd, 2

; addresses of working registers
ImF1 equ h’20’
ReF1 equ h’21’
ImF2 equ h’22’
ReF2 equ h’23’
result equ h’24’

; instruction set for the AT25HP512
wren equ b’00000110’ ; set write enable latch
wrdi equ b’00000100’ ; reset write enable latch
rdsr equ b’00000101’ ; read status register
wrsr equ b’00000001’ ; write status register
read equ b’00000011’ ; read data from memory
write equ b’00000010’ ; write data to memory

; assembler constants
fsr_value equ h’20’
conf_sspstat equ b’01000000’
conf_sspcon equ b’00100000’

The next part of the assembler code deals with

initialisation of the SPI interface. To accomplish
communication, SDO and SCK pins are configured as
outputs, and SDI pin as input. The module MSSP works as
SPI interface in master mode with “0” clock polarity.

; SPI interface initialisation
bank1
bcf portc, 3 ; SCK as output
bsf portc, 4 ; SDI as input
bcf portc, 5 ; SDO as output
bcf cs1 ; CS1 as output
bcf cs2 ; CS2 as output
movlw conf_sspstat
movwf sspstat ; configure SSPSTAT register

bank0
movlw conf_sspcon
movwf sspcon ; configure SSPCON register
bsf cs1
bsf cs2 ; deselect U1 and U2 device

The last by one part of the assembler code contains

function declarations regarded to service of EEPROM
memory. send_data function, which co-shares the code with
send_instruction function (it reduces the size of code), in
first step moves data to W register from address in memory
pointed by FSR register, next it increments a content of FSR
register. In the next step it realises the same as the

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

send_instruction function, so it sends via the SPI interface a
byte from W register and simultaneously the read byte
writes to this register. read_eeprom function reads the byte
from address (ImF, ReF) in EEPROM memory. It uses the
send_instruction function to write the code of the READ
instruction to the memory. Next it uses two send_data
functions to move two bytes of the byte address. At the end
it uses the send_instruction function which generates
impulses needed to read byte from the EEPROM memory.
The result is saved in result register by operate logical AND
(property of the 4D method [1,2]).

; functions service SPI interface and AT25HP512
; function send_data
send_data
 movf indf, w ; data in W register
 incf fsr ; FSR points next register

; function send_instruction
send_instruction
 movwf sspbuf ; start transmission
 btfss sspstat, bf
 goto $-1 ; wait for end
 movf sspbuf, w ; read byte in W register
 return

;function read_eeprom
read_eeprom
 movlw read ; in W register READ code
 call send_instruction ; send READ code
 call send_data ; send high byte of address
 call send_data ; send low byte of address
 call send_instruction ; read byte from EEPROM
 andwf result, 1 ; read byte in result register
 return

The last part of the assembler code contains the full

procedure of fault detection. At the beginning it moves to
FSR register an appropriate value, so that this register points
ImF1 register and it moves h’FF’ value to the result register.
In next step it reads the byte from first EEPROM memory
(low level on CS1 pin selects device U1) and the byte from
second EEPROM memory (U2 device). At the end it tests
the bite number zero in the result register. If it is set „1” the
microcontroller goes to initialisation and execution of the
main program. If this bit is reset, the microcontroller goes to
“alert” state and informs the microsystem about the
appearance of a fault in its analog network.

; main fault detection procedure
fault_detection
 movlw fsr_value
 movwf fsr ; FSR register points to
 ; ImF1 register
 clrf result
 comf result ; h’FF’ in result register

 bcf cs1
 call read_eeprom ; read byte from U1 device
 bsf cs1

 bcf cs2
 call read_eeprom ; read byte from U2 device
 bsf cs2

 btfsc result, 0 ; testing procedure
 goto initialisation ; if OK go to main program
 goto alert ; else go to “alert” procedure

The last two parts of the assembler code are written in a

way, which enables minimisation of the size of the result
code. It is important, because this code should take a place
as small as possible in the program memory of the
microcontroller. So the all the remaining place can be used
by the main program.

4. CONCLUSIONS

The paper deals with a new method of creation of the

fault dictionary for self-testing of analog networks in mixed
analog-digital devices and microsystems, a new self-testing
procedure based on this dictionary and on the 4D method.

An advantage of the proposed self-testing procedure is
the possibility of its implementation in a simple
microcontroller existing in the SPI interface. It is necessary
to underline the fact that in spite of its simplicity, it enables
fault detection and localisation in analog networks with
component tolerances taken into consideration.

The additional advantage of this approach is adding only
two inexpensive serial EEPROM’s to the microsystem and
dedicate to them only two pins of the microcontroller (to a
SPI interface we can connect other devices in parallel).

REFERENCES

[1] Z. Czaja, “The fault location algorithm based on two circuit

functions”, In proc. XVI IMEKO World Congress, Vienna,
Austria, 25-28 September 2000, Volume VI, pp. 29-32.

[2] Czaja Z., Zielonko R., “New methods of fault diagnosis in
electronic circuits based on bilinear transformation in
multidimensional spaces”, Metrology and Measurement
Systems, Vol. VIII. Number 3 (2001), Warsaw 2001, pp. 251-262.

[3] Microchip, “PIC16F87X Data Scheet”, PDF documentation
from: http://www.microchip.com.

[4] Atmel, “SPI Serial EEPROMs AT25HP256/512”, PDF
documentation from: http://www.atmel.com.

Author: Dr Zbigniew Czaja, Gdansk University of Technology,
Faculty of Electronics, Telecommunications and Informatics,
Department of Electronic Measurements, ul. G. Narutowicza
11/12, 80-952 Gdansk, Poland, phone ++48 58 347-14-87,
fax ++48 58 347-22-55 and e-mail. zbczaja@pg.gda.pl

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC4

	P318:
	Numb:
	Numbx:
	C: 742

	P319:
	Numb:
	Numbx:
	C: 743

	P320:
	Numb:
	Numbx:
	C: 744

	P321:
	Numb:
	Numbx:
	C: 745

