Proceedings, XVII IMEKO World Congress, June 22 — 27, 2003, Dubrovnik, Croatia

TC14

XVII IMEKO World Congress
June 22-27, 2003, Dubrovnik, Croatia

ESTIMATION OF UNCERTAINTY FROM UNKNOWN
SYSTEMATIC ERRORS IN COORDINATE METROLOGY

Kiyoshi Takamasu*, Kenichiro Nosaka®, Makoto Abbe**, Ryoshu Furutani*** and Shigeo Ozono***

* Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
** Mitutoyo, *** Tokyo Denki University

Abstract — In coordinate metrology, a feature (Gaussian
associated feature) is calculated from a measured data set by
CMM (Coordinate Measuring Machine) using least squares
method. This data processing flow is called as “feature-
based metrology”. In the feature-based metrology, it is a key
technique to estimate the uncertainty of measurement in the
specific measuring strategy. In this paper, the effects of
unknown systematic errors are theoretically analyzed to
estimate the uncertainties. The estimation method of
uncertainties from two types of unknown systematic errors,
such as errors of calibration of ball probe and errors form
deviations of measured workpieces, are proposed.
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1. FEATURE-BASED METROLOGY

In coordinate metrology, associated features and
associated derived features are calculated from measured
data sets on real features by CMM (Coordinate Measuring
Machine). Then, the associated features are compared with
the nominal features indicated on the drawings (see Fig. 1).
In this data processing, the features are primal targets to
calculate, to evaluate and to process. Consequently, this
process is called as “Feature-Based Metrology” [1].

In the feature-based metrology, it is a key technique to
estimate the uncertainty of measurement [2] in the specific
measuring strategy [3-5]. The estimation method for
uncertainties of measured parameters has been already
proposed when the only random errors are put in the
consideration [6]. The uncertainty of each measured point is
defined by error analysis of the CMM and the probing
system. From the uncertainty of measured point, the
uncertainty of measured feature can be calculated
statistically using following equations.

Equation (1) shows an observation equation, a regular
equation and a least squares solution, where A is Jacobian
matrix, d is measurements vector, X is a parameter vector
and S is an error matrix. In this paper, we analyze
uncertainty measurement of circular features. For the
circular features, the uncertainties of parameter s,, s, and sy
(X and Y coordinate of the center and the diameter)
calculated by Eq. (2).
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2. UNKNOWN SYSTEMTIC ERRORS

We analyze two types of unknown systematic errors in
measurement process of circular workpieces. For simple
analysis, all measurement processes are done in two
dimensional space. The first factor is uncertainty from the
calibration process of the ball probe [6] and the second
factor is the effect of the form deviations of measured
circular workpieces.

The error matrix S is only effected by the systematic
errors. When there is no systematic error in the measuring
process, the error matrix is the unit matrix multiplied by the
random error s,. For the known systematic errors, we can
compensate the measuring values. On the other hand, when
the unknown systematic errors influence the measuring
results, the error matrix has the factors of covariance by the
systematic errors. Using the error matrix, we can estimate
the influences from the unknown systematic errors

statistically.
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Fig. 1 Data processing flow in feature-based metrology.
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3.1 Calibration of ball probe

Fig. 2 shows the two dimensional model for the
theoretical analysis of the effect of the calibration process of
the ball probe. Firstly, the diameter and the center position

of a probe ball are calibrated by measuring a reference circle.

The diameter of the reference circle is calibrated with the
uncertainty s.. After the calibration, a measured circle is
measured by the ball probe with random measured error s,,.
Measured position on the measured circle is indicated by
angle # shown on Fig. 3.

There are two unknown systematic errors, errors of
diameter and center position, in calibration of probe. Two
measuring positions (angle) # and # has the measuring
errors dr; and dr, from diameter error on the measured circle
(Eq. (3)). Then, variance and the covariance of two
measuring data are calculated in Eq. (4).

)

“4)

Two measuring positions (angle) # and # has the
measuring errors dry and dr, from center position errors on
the measured circle (Eq. (5)). The variance and the
covariance from center position errors are calculated from
the error matrix shown in Eq. (6), where ¢, and ¢, are center
position errors.

dr, =dxcost, +dysint,, dr, =dxcost, +dysint,

)
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From two unknown systematic errors, the total variances
and covariance are calculated in Eq. (7). Using these Egs.,
the uncertainties of measured circle can be defined. If we
use two probing system or styli, the total error matrix are
defined in Eq. (8).
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Fig. 4 shows an example of circle measurements for
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Fig. 2 Model for calibration of ball probe and measurement of
circle in 2 dimensional area
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Fig. 3 Measured position indicated by angle ;

Fig. 4 Example of circle measurements for estimation of
uncertainty on 14 measured points by 3 probes

Table 1 Uncertainty of center position and diameter of circle
by contributors of calibration errors on Fig. 4 (b)

estimation of uncertainty on 14 measured points by 3 probes.

Table 1 indicate the estimated uncertainties by patterns of
consideration on center position error of probe, diameter
error of probe and certificate error of reference circle, where
¢y is 2.25 pm, s, is 3 Um and s, is 5 pm. These uncertainties

unit: pm
Center position error o o o os os
of probe ¢, ¢, Y Y Y
Diameter error of
probe ¢4 no no yes yes yes
(s. not included)
Certificate error of
; no no no no yes
reference circle s,
Xpositionerrorof -y g)0 5 441 1933 2444 2.444
measured circle s,
Y position error of - o505 493 966 2720 2720
measured circle s,
Diametererrorof 5 533 3197 3419 3805 4.845

measured circle s,
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indicate diameter error of measured circle varies from 2.733
Mm to 4.854 pm relation to the consideration pattern of
unknown systematic errors.

3.2 Form deviation of measured workpice

Fig. 5 displays the circular features with random errors
and with errors from autocorrelation function in Fig. 6.
When form deviation is random function, the error matrix
Sean 18 defined by the unit matrix and variance sf2 of form
deviation in Eq. 9. When form deviation has specified
function, the error matrix S., is defined by the
autocorrelation matrix R, and the variance sz of form
deviation in Eq. 10.
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_ . _ 2 . _ 2
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From two types of error matrix S, and S, there are
three types of uncertainties of measured parameters P, Peoy
and P, are defined in Egs. 11, 12 and 13.

P, is uncertainty matrix of center position and diameter
of measured circle when form deviation is ashamed as
random function. P, is uncertainty matrix when form
deviation has the specified autocorrelation function and
calculated wusing the autocorrelation function. P is
uncertainty matrix when the form deviation has the specified
autocorrelation function and calculated without the
autocorrelation function. Usually the calculating program in
CMM can not handle the autocorrelation function. Therefore,
uncertainties of the normal calculating situation in
measuring by CMM are defined by P...

P, =(AS A =57 (A'A)” (1)

P, =(A'SA) ' =5] (ARA) (12)
Pr+c = ((‘AIA)_1 AI ) Scov ((AIA)_I Al )t

(13)

=57 (A'A) AR, (A'A)'A")

When measuring area is all measured circle, P, and P,
are completely same values, because of S.,, and S,,, are the
same weight function for least squares calculation. Fig. 7
illustrates relationship between number of data n and
uncertainty (standard deviation) of diameter s; and X
coordinate of center s,. On Fig. 7 (a), uncertainty of
diameter in 4, 6 and 8 measured data is larger than these in
odd number of measured data. This 1is because

autocorrelation function of measured circle (Fig. 6) has large

(a) random errors

(b) errors from autocorrelations

Fig. 5 Circular feature with random errors and errors from
specified autocorrelations
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Fig. 6 Autocorrelation function of measured circle (Fig. 5 (b))
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Fig. 7 Relationship between number of data » and uncertainty
(standard deviation) of diameter s, and X coordinate of center s,
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2 and 4 order frequency values. On the other hand, the
uncertainty of center (Fig. 7 (b)) in 3 and 5 measured data
are larger than these in even number of measured data.

When the measured data are in the measured area a for
partial circle measurement in Fig. 8, S.,, and S, are not
same weight functions. Fig. 9 shows the relationship
between the uncertainty of diameter s, and the number of
data n in the partial circle measurement of angle a = 180, 90
and 30 deg, by 3 calculated methods P, P, and P.,,. For
the partial circle measurement, P.,, is under estimation and
P is over estimation for the uncertainty, when the number
of measured data is large.

4. CONCLUSIONS

In this paper, we theoretically analyzed the effects of the
unknown systematic errors in feature-based metrology. The
calibrated error of the ball probe and the form deviation of
circular feature treated as the unknown systematic errors.
These errors propagate as unknown systematic errors to the
uncertainties of measured parameters, such as the center
position and the diameter of a measured circle. The method
to calculate the error matrix S was derived when the center
position and the diameter of the circle are measured.

Using this method, the uncertainties of the measured
parameters can also be calculated in the complex measuring
strategy. The series of simulations for this method in
statistical way directly implies that the concept and the basic
data processing method in this paper are useful to the feature
based metrology.
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Fig. 8 Measured area a for partial circle measurement, 5 measured
points in £90 deg (a = 180 deg)
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Fig. 9 Relationship between uncertainty of diameter s, and number
of data n in partial circle measurement of angle ¢ = 180, 90 and 30
deg, by 3 calculated methods P..., P, and P,
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