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Abstract −−−− In coordinate metrology, a feature (Gaussian 
associated feature) is calculated from a measured data set by 
CMM (Coordinate Measuring Machine) using least squares 
method. This data processing flow is called as “feature-
based metrology”. In the feature-based metrology, it is a key 
technique to estimate the uncertainty of measurement in the 
specific measuring strategy. In this paper, the effects of 
unknown systematic errors are theoretically analyzed to 
estimate the uncertainties. The estimation method of 
uncertainties from two types of unknown systematic errors, 
such as errors of calibration of ball probe and errors form 
deviations of measured workpieces, are proposed. 
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1.  FEATURE-BASED METROLOGY 
 

In coordinate metrology, associated features and 
associated derived features are calculated from measured 
data sets on real features by CMM (Coordinate Measuring 
Machine). Then, the associated features are compared with 
the nominal features indicated on the drawings (see Fig. 1). 
In this data processing, the features are primal targets to 
calculate, to evaluate and to process. Consequently, this 
process is called as “Feature-Based Metrology” [1]. 

In the feature-based metrology, it is a key technique to 
estimate the uncertainty of measurement [2] in the specific 
measuring strategy [3-5]. The estimation method for 
uncertainties of measured parameters has been already 
proposed when the only random errors are put in the 
consideration [6]. The uncertainty of each measured point is 
defined by error analysis of the CMM and the probing 
system. From the uncertainty of measured point, the 
uncertainty of measured feature can be calculated 
statistically using following equations. 

Equation (1) shows an observation equation, a regular 
equation and a least squares solution, where A is Jacobian 
matrix, d is measurements vector, x is a parameter vector 
and S is an error matrix. In this paper, we analyze 
uncertainty measurement of circular features. For the 
circular features, the uncertainties of parameter sx, sy and sd 
(X and Y coordinate of the center and the diameter) 
calculated by Eq. (2). 
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2.  UNKNOWN SYSTEMTIC ERRORS 

 
We analyze two types of unknown systematic errors in 

measurement process of circular workpieces. For simple 
analysis, all measurement processes are done in two 
dimensional space. The first factor is uncertainty from the 
calibration process of the ball probe [6] and the second 
factor is the effect of the form deviations of measured 
circular workpieces.  

The error matrix S is only effected by the systematic 
errors. When there is no systematic error in the measuring 
process, the error matrix is the unit matrix multiplied by the 
random error sp. For the known systematic errors, we can 
compensate the measuring values. On the other hand, when 
the unknown systematic errors influence the measuring 
results, the error matrix has the factors of covariance by the 
systematic errors. Using the error matrix, we can estimate 
the influences from the unknown systematic errors 
statistically. 
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Fig. 1  Data processing flow in feature-based metrology. 
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3.1  Calibration of ball probe 
Fig. 2 shows the two dimensional model for the 

theoretical analysis of the effect of the calibration process of 
the ball probe. Firstly, the diameter and the center position 
of a probe ball are calibrated by measuring a reference circle. 
The diameter of the reference circle is calibrated with the 
uncertainty sc. After the calibration, a measured circle is 
measured by the ball probe with random measured error sp. 
Measured position on the measured circle is indicated by 
angle ti shown on Fig. 3. 

There are two unknown systematic errors, errors of 
diameter and center position, in calibration of probe. Two 
measuring positions (angle) t1 and t2 has the measuring 
errors dr1 and dr2 from diameter error on the measured circle 
(Eq. (3)). Then, variance and the covariance of two 
measuring data are calculated in Eq. (4). 
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Two measuring positions (angle) t1 and t2 has the 
measuring errors dr1 and dr2 from center position errors on 
the measured circle (Eq. (5)). The variance and the 
covariance from center position errors are calculated from 
the error matrix shown in Eq. (6), where cx and cy are center 
position errors. 
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From two unknown systematic errors, the total variances 
and covariance are calculated in Eq. (7). Using these Eqs., 
the uncertainties of measured circle can be defined. If we 
use two probing system or styli, the total error matrix are 
defined in Eq. (8). 
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Fig. 4 shows an example of circle measurements for 
estimation of uncertainty on 14 measured points by 3 probes. 
Table 1 indicate the estimated uncertainties by patterns of 
consideration on center position error of probe, diameter 
error of probe and certificate error of reference circle, where 
cx is 2.25 µm, sc is 3 µm and sp is 5 µm. These uncertainties 
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Fig. 2  Model for calibration of ball probe and measurement of 
circle in 2 dimensional area 
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Fig. 3  Measured position indicated by angle ti 
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Fig. 4  Example of circle measurements for estimation of 
uncertainty on 14 measured points by 3 probes 

 
 

Table 1  Uncertainty of center position and diameter of circle 
by contributors of calibration errors on Fig. 4 (b) 

 unit: µm
Center position error 

of probe cx, cy 
no yes no yes yes 

Diameter error of 
probe cd 

(sc not included) 
no no yes yes yes 

Certificate error of 
reference circle sc 

no no no no yes 

X position error of 
measured circle sx 

1.928 2.441 1.933 2.444 2.444

Y position error of 
measured circle sy 

1.956 2.473 2.266 2.720 2.720

Diameter error of 
measured circle sc 

2.733 3.197 3.419 3.805 4.845
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indicate diameter error of measured circle varies from 2.733 
µm to 4.854 µm relation to the consideration pattern of 
unknown systematic errors.  

 
3.2  Form deviation of measured workpice 
Fig. 5 displays the circular features with random errors 

and with errors from autocorrelation function in Fig. 6. 
When form deviation is random function, the error matrix 
Sran is defined by the unit matrix and variance sf

2 of form 
deviation in Eq. 9. When form deviation has specified 
function, the error matrix Scov is defined by the 
autocorrelation matrix Rcov and the variance sf

2 of form 
deviation in Eq. 10. 
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From two types of error matrix Sran and Scov, there are 
three types of uncertainties of measured parameters Pran, Pcov 
and Pr+c are defined in Eqs. 11, 12 and 13.  

Pran is uncertainty matrix of center position and diameter 
of measured circle when form deviation is ashamed as 
random function. Pcov is uncertainty matrix when form 
deviation has the specified autocorrelation function and 
calculated using the autocorrelation function. Pr+c is 
uncertainty matrix when the form deviation has the specified 
autocorrelation function and calculated without the 
autocorrelation function. Usually the calculating program in 
CMM can not handle the autocorrelation function. Therefore, 
uncertainties of the normal calculating situation in 
measuring by CMM are defined by Pr+c. 
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When measuring area is all measured circle, Pcov and Pr+c 
are completely same values, because of Scov and Sran are the 
same weight function for least squares calculation. Fig. 7 
illustrates relationship between number of data n and 
uncertainty (standard deviation) of diameter sd and X 
coordinate of center sx. On Fig. 7 (a), uncertainty of 
diameter in 4, 6 and 8 measured data is larger than these in 
odd number of measured data. This is because 
autocorrelation function of measured circle (Fig. 6) has large 

-4 

0 

4 

 

-16 

0 

16 

 
             (a) random errors             (b) errors from autocorrelations

 

Fig. 5  Circular feature with random errors and errors from 
specified autocorrelations 
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Fig. 6  Autocorrelation function of measured circle (Fig. 5 (b))
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(a) Uncertainty of diameter 
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(b) Uncertainty of X coordinate of center 

 
Fig. 7  Relationship between number of data n and uncertainty 
(standard deviation) of diameter sd and X coordinate of center sx 
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2 and 4 order frequency values. On the other hand, the 
uncertainty of center (Fig. 7 (b)) in 3 and 5 measured data 
are larger than these in even number of measured data. 

When the measured data are in the measured area a for 
partial circle measurement in Fig. 8, Scov and Sran are not 
same weight functions. Fig. 9 shows the relationship 
between the uncertainty of diameter sd and the number of 
data n in the partial circle measurement of angle a = 180, 90 
and 30 deg, by 3 calculated methods Pr+c, Pcov and Pran. For 
the partial circle measurement, Pran is under estimation and 
Pr+c is over estimation for the uncertainty, when the number 
of measured data is large. 

 
4.  CONCLUSIONS 

 
In this paper, we theoretically analyzed the effects of the 

unknown systematic errors in feature-based metrology. The 
calibrated error of the ball probe and the form deviation of 
circular feature treated as the unknown systematic errors. 
These errors propagate as unknown systematic errors to the 
uncertainties of measured parameters, such as the center 
position and the diameter of a measured circle. The method 
to calculate the error matrix S was derived when the center 
position and the diameter of the circle are measured. 

Using this method, the uncertainties of the measured 
parameters can also be calculated in the complex measuring 
strategy. The series of simulations for this method in 
statistical way directly implies that the concept and the basic 
data processing method in this paper are useful to the feature 
based metrology. 
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Fig. 8  Measured area a for partial circle measurement, 5 measured 
points in ±90 deg (a = 180 deg) 
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(a) a = 180 deg 
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(b) a = 90 deg 
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Fig. 9  Relationship between uncertainty of diameter sd and number 
of data n in partial circle measurement of angle a = 180, 90 and 30 
deg, by 3 calculated methods Pr+c, Pcov and Pran 
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