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Abstract: The aim of this work is to develop a low-

overhead, low-cost built-in test for Micro Electro 

Mechanical Systems (MEMS). The proposed method relies 

on processing the Impulse Response (IR) through trained 

neural networks, in order to predict a set of MEMS 

performances, which are otherwise very expensive to 

measure using the conventional test approach. The use of 

neural networks allows us to employ a low-dimensional IR 

signature, which results in a compact built-in test. A MEMS 

structure combining electro-thermal excitation and 

piezoresistive sensing was chosen as our case study. A 

behavioral model of this structure was built using Matlab for 

the purpose of the experiment. The results demonstrate that 

the neural network predictions are in excellent agreement 

with the simulation results of the behavioral model.  

Keywords: MEMS testing, neural networks, feature 

selection. 

1.   INTRODUCTION 

MEMS are used as building blocks in various sensors 

and actuators. These blocks are made by micromachining 

and contain mechanical elements and converters which 

operate in multiple energy domains, such as mechanical, 

thermal and electrical [1]. As an example, the cantilever 

structure, shown in Figure 1, combines electro-thermal 

actuation and piezoresistive sensing.  

 

 

Fig. 1:  MEMS structure [2] 

The production test of devices employing MEMS 

structures is based on direct measurement of performance 

parameters such that the specifications promised in the data 

sheet are met. Such measurement procedures require the use 

of sophisticated and expensive external test equipment. For 

example, mechanical vibrations need to be applied. 

An alternative approach to obtain specification 

parameters based on IR evaluation was developed in [3]. 

The aim is to substitute the expensive thermal and 

mechanical tests with a simple pseudorandom test, as shown 

in Figure 2. Specifically, the MEMS device is embedded 

between an ADC and a DAC. The DAC is driven by a 

pseudorandom sequence x[k] that is generated by a 

maximal-length shift register. It can be shown that the cross-

correlation between x[k] and the output of the ADC, y[k], is 

proportional to the IR sample h[k]. The resources required 

for the on-chip IR evaluation are proportional to the number 

of estimated samples h[k]. In order to decide on the 

satisfaction or violation of the specifications, the IR 

signature is compared to thresholds imposed around a 

golden signature (i.e. a signature that ideally would include 

the whole population of functional devices). Clearly, this 

may result in misclassification since the true boundaries are 

likely to be very complex.  

 

 

 

 

 

 

 

 

Fig. 2:  Pseudorandom test architecture 

 

In this work, we examine the possibility of mapping a 

reduced number of samples h[k] implicitly to the 

performance parameters. This mapping is learned by 

training a feed-forward neural network, as shown in Figure 

3.  After training is complete, the network is pruned, without 

deteriorating the mapping resolution, in order to minimize 

the number of required samples h[k], thereby minimizing 

the number of correlation cells in the cross-correlation 

block. This results in a compact built-in test implementation. 
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We should note that the mapping method follows the 

alternate test paradigm proposed in [4].  

2.   METHOD 

The electrical equivalent scheme of the cantilever 

structure of Figure 1 is shown in Figure 4. This parametrized 

behavioral model can be used for simulating the MEMS 

structure. Our method consists of the following steps: 

 

Fig. 3:  Mapping IR to the performance space 

 

 

Fig. 4:  MEMS electrically equivalent scheme [3] 

 

1) We generate a large number of MEMS instances by 

carrying out a Monte Carlo simulation of the behavioral 

model.  

2)  We determine a training set comprising the IR 

signature (k=0,.., 40) and the performance parameters for 

each of these randomly generated instances. We considered 

the DC gain, the mechanical resonance frequency of the 

cantilever, f_mech, and the low-limiting frequency, f_therm, 

beyond which the cantilever displacement roll-off is 

observed due to the thermal effect. Generated IRs for 1000 

instances are illustrated in Figure 5. 

3)  We construct a neural network to map the impulse 

response signature to the performance parameters. We 

experimented with multi-layer perceptron networks (MLPN) 

with one and two hidden layers of units, that is, with three 

and four layers of adaptive weights, respectively. 

 

Fig. 5:  IRs from MEMS behavioral model simulation 

 

3.   RESULTS 

The MLPNs are constructed using Matlab v.7.0. The 

first step is to find the optimal architecture of the 3-layer and 

4-layer MLPNs. In particular, the Mean Squared Error 

(MSE) on an independent testing set initially decreases as 

we keep adding neurons and at some point it starts 

increasing, implying that the MLPN becomes too flexible 

and starts fitting too much of the noise on the training set. 

This is shown in Figure 6 for the 3-layer MLPN and in 

Figures 7-8 for the 4-layer MLPN. From these plots it can 

be deduced that the optimal architectures for the MLPNs in 

terms of minimum MSE are 40-5-3 and 40-5-5-3.  

The next step is feature selection to prune all redundant 

input neurons and, thereby, eliminate redundant samples 

h[k]. This is useful since it might improve generalization by 

mitigating the curse of dimensionality and, in addition, it 

will allow us to have a simpler structure for possible on-chip 

realization of the cross-correlation block. A well-known 

method for this purpose is the contribution measure 

described in [5]. 

 

 

Fig. 6:  MSE function of 3-layer MLPN during search of optimal 

architecture 

 

322



 

Fig. 7:  MSE function of 4-layer MLPN during search of optimal 

architecture – Training set 

 

Fig. 8:  MSE function of 4-layer MLPN during search of optimal 

architecture – Testing set 

 

For a 3-layer MLPN, the contribution measure of an 

input node i to an output node k is defined as follows: 
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where Nin is the number of nodes in the input layer, Nhid is 

the number of nodes in the hidden layer, Wij is the weight on 

the synapse between an input node i and a hidden node j and 

Wjk is the weight on the connection between a hidden node j 

and an output node k. The generalization of eq. (1) for the 

case of a 4-layer MLPN is straightforward. 

The contribution measure of an ith input node to the Nout 

output nodes can be calculated as follows: 
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In each step of pruning it is necessary to calculate the Ci 

index, in order to find the input neuron with the lowest 

contribution. This neuron is eliminated and the network is 

retrained to recalculate the MSE. The procedure terminates 

when the MSE begins to grow. The first step of this 

procedure is illustrated in Table 1 for 3-layer MLPN and in 

Table 2 for 4-layer MLPN, respectively. The course of 

pruning and the moment where the MSE starts growing are 

illustrated in Figure 9 for 3-layer MLPN and in Figure 10 

for 4-layer MLPN, respectively.  

No. of node Ci No. of node Ci

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 0,2264 24 0,04768

6 0,05065 17 0,04836

7 0,06996 6 0,05065

8 0,09659 29 0,05278

9 0,08088 14 0,05341

10 0,11566 36 0,05512

11 0,12139 20 0,05681

12 0,10192 32 0,05781

13 0,08324 33 0,06031

14 0,05341 34 0,06047

15 0,16131 30 0,06142

16 0,0826 28 0,06204

17 0,04836 31 0,06458

18 0,08097 27 0,06824

19 0,08081 7 0,06996

20 0,05681 40 0,0702

21 0,08198 22 0,076

22 0,076 38 0,07675

23 0,08304 19 0,08081

24 0,04768 9 0,08088

25 0,08284 18 0,08097

26 0,11892 21 0,08198

27 0,06824 16 0,0826

28 0,06204 25 0,08284

29 0,05278 23 0,08304

30 0,06142 13 0,08324

31 0,06458 39 0,09605

32 0,05781 8 0,09659

33 0,06031 12 0,10192

34 0,06047 37 0,10214

35 0,11069 35 0,11069

36 0,05512 10 0,11566

37 0,10214 26 0,11892

38 0,07675 11 0,12139

39 0,09605 15 0,16131

40 0,0702 5 0,2264

sorted data

 

Table 1: First step of Ci index calculation for the 3-layer MLPN 
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Fig. 9:  MSE for the 3-layer MLPN during pruning 
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No. of node Ci No. of node Ci

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 0,15342 21 0,0144

6 0,04828 17 0,01793

7 0,03654 20 0,01795

8 0,06189 22 0,02931

9 0,08518 33 0,03008

10 0,0449 35 0,03196

11 0,06919 27 0,03448

12 0,07233 31 0,03484

13 0,04287 7 0,03654

14 0,05758 36 0,03774

15 0,06359 16 0,03993

16 0,03993 24 0,03999

17 0,01793 38 0,04163

18 0,04836 29 0,04182

19 0,0453 13 0,04287

20 0,01795 26 0,04346

21 0,0144 10 0,0449

22 0,02931 19 0,0453

23 0,05162 30 0,04613

24 0,03999 6 0,04828

25 0,04857 18 0,04836

26 0,04346 25 0,04857

27 0,03448 23 0,05162

28 0,05905 14 0,05758

29 0,04182 28 0,05905

30 0,04613 39 0,05953

31 0,03484 8 0,06189

32 0,06968 34 0,06305

33 0,03008 15 0,06359

34 0,06305 40 0,06393

35 0,03196 37 0,06715

36 0,03774 11 0,06919

37 0,06715 32 0,06968

38 0,04163 12 0,07233

39 0,05953 9 0,08518

40 0,06393 5 0,15342

sorted data

 
 

Table  2:  First step of Ci index calculation for the 4-layer MLPN 
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Fig. 10:  MSE for the 4-layer MLPN during pruning  

 

 

The final architectures of the MLPNs are shown in Figures 

11 and 12. 

 

 

Fig. 11:  Architecture of final 3-layer MLPN (6-5-3) 

 

 

Fig. 12:  Architecture of final 4-layer MLPN (4-5-5-3) 

  

The prediction ability of these final architectures is 

tested using 5000 unseen IRs for which the target 

performances, namely the DC gain, f_mech, and f_therm, 

are known. This prediction ability is illustrated in the 

constellation plots of Figures 13–15. Each point 

corresponds to a MEMS instance. The blue and green points 

correspond to the 3-layer and 4-layer MLPN, respectively. 

The x-coordinate is the target (true) performance parameter 

value and the y-coordinate is the predicted performance 

parameter value. A very good correlation can be observed. 

This implies that we could substitute the expensive 

mechanical and thermal tests by processing the signature of 

pseudorandom test through trained MLPNs.  

 

Fig. 13: Graph of approximation ability of final MLPNs – DC gain 

 

5.   DISCUSSION AND CONCLUSIONS 

 

In this work, we propose a built-in test solution for MEMS 

devices that is based on mapping IR samples to the 

parameter specifications using MLPNs. This solution can 

significantly reduce the cost of MEMS testing by virtue of 

avoiding expensive thermal and mechanical tests. In 

comparison to [3], our method reduces the test error rate by 
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Fig. 14: Graph of approximation ability of final MLPNs – f_therm 

 

avoiding crude comparison of IR samples to artificially 

imposed thresholds. Furthermore, the proposed method 

allows us to reduce the on-chip test circuitry which is 

peripheral to the MEMS device. This is achieved by a 

feature selection step which reduces the dimensionality of 

the IR signature and, therefore, the number of needed cross-

correlation cells needed for extracting the IR signature. In 

terms of future work, we are planning to examine whether 

we can achieve similar prediction accuracy by using low-

resolution IR samples that is by using converters with lower 

bit accuracy. This will further compact the needed built-in 

test resources. 
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Fig. 15: Graph of approximation ability of final MLPNs – f_mech 
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