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Abstract — In this study we present a 2D finite element
model for computing magnetic fields generated by
underground power cables with two-point bonded
shields. The model is developed in ANSYS Maxwell 2D
low-frequency electromagnetic field simulation
software for a typical 12/20 kV three-phase
underground power cable system in flat formation, but
it can be adapted to any line. The model validation is
achieved by analytical computations conducted with a
software tool based on the Biot-Savart law and
superposition principlee. RMS magnetic flux density
profiles calculated at various heights above the ground
with these two methods correlate very well. This is also
true for induced shield currents.

I.  INTRODUCTION

The continuous development of urban centers leads to
an increase in the demand for electricity, hence
underground power cables (UPCs) are becoming more
frequent in these places. It is well known that, similar to
overhead power lines, UPCs generate low-frequency
electric and magnetic fields. The electric fields are nearly
completely eliminated by the surrounding metallic
sheath(s) and the conducting soil. In contrast, the magnetic
fields are not shielded and reduce only by distance. In fact,
the magnetic fields from an UPC sometimes can be
stronger than those generated by a corresponding overhead
power line because these lines are located farther away
from ground [1,2].

Calculating magnetic fields from UPCs is very
important in several research areas, including human
exposure evaluation studies [3-8]. A common 2D approach
is based on the Biot-Savart law and superposition principle,
assuming that the conductors are straight, horizontal,
infinitely long and parallel to each other and the effect of
the induced shield currents on the magnetic field is

negligible. However, when dealing with solid bonding (i.e.,
the underground cables operate with their metallic shields
bonded and grounded at both ends), the circulating
currents induced in shields may achieve the same order as
the wire-core currents, which leads to a weakening of the
total magnetic field. In some references, e.g. [9] and [10],
analytical expressions for the induced shield currents have
been obtained under balanced three-phase conditions. It
has also been considered the magnetic field reduction.

Some finite element models have also been developed
for computing magnetic fields from UPCs with two-point
bonded shields. An extensive study is presented in [11],
which uses COMSOL Multiphysics to investigate the
magnetic field reduction rate for a three-phase flat cable
system as a function of the distance between cables, the
shield diameter, as well as the cross-sectional area of the
cable shields. In [12], QuickField was mainly used for
predicting underground cable ampacity (for both flat and
trefoil formations), while the developed 2D model also
allows investigating the magnetic field distribution at the
ground surface. Another study to be mentioned is [13], in
which ANSYS Maxwell 2D was used for studying loss
reduction in cable sheathing and, in much lesser extent,
magnetic field distribution close to the ground surface.

In our study, the problem of the magnetic field from
underground power cables with two-point bonded shields
is also solved using ANSYS Maxwell 2D. The proposed
model is developed for a typical 12/20 kV three-phase
underground power cable system in flat formation, but it
can be adapted to any line. For validation, calculated
magnetic fields are checked against analytical results
obtained with a software tool based on the Biot-Savart law
and superposition principle, which represents an updated
version of a previously developed program [2].

The rest of the paper is structured as follows: Section II
presents the geometry and simulation conditions for the
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UPC system considered for analysis; Section III describes
the proposed finite element model; Section IV deals with
model validation; Section V discusses numerical
simulation results; Section V draws conclusions.

II. UNDERGROUND POWER CABLE SYSTEM
SELECTED FOR ANALY SIS

The basic geometry of the three-phase cable system
selected for analysis is presented in Fig. la. It consists of
three NA2XS(FL)2Y 12/20 kV single-core medium
voltage cables in flat formation, separated by a distance
between centers of 0.1 m and buried in the ground at a
depth of 0.8 m. Each cable has an aluminum (Al) core
conductor with the cross-sectional area of 150 mm? and a
copper (Cu) wire shield with the cross-sectional area of
25 mm?. The copper shields are grounded at the ends of the
cables as depicted in Fig. 1b. For computation, it is
assumed that the three-phase UPC system has balanced
currents, as follows: /; = 100 A £ -120°, L, =100 A 2 0°
and 3 =100 A £ 120°. The simulation temperature is set
to 22 °C, which is default in ANSYS Maxwell 2D.
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a)

b)

Fig. 1. Three-phase UPC system: a) basic geometry;
b) two-point bonding scheme

III.  FINITE ELEMENT MODEL

ANSYS Maxwell 2D is a software package that uses
finite element method (FEM) to solve 2D low-frequency
electromagnetic problems, by specifying the appropriate
geometry, material properties and excitations for a device
or system of devices — in our case, a three-phase
underground power cable system. The proposed problem is
solved using the “eddy current solver”, which allows
computing steady state, time-varying (AC) magnetic fields
at a given frequency, here 50 Hz.
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The global FEM model is illustrated in Fig. 2a, where
the computational domain is a square of side @ = 40 m,
sufficiently large to determine the behavior of the
magnetic field well outside from the centerline. The three-
phase UPC system is buried — at the mentioned depth — in
a ground with the electrical conductivity ¢ = 0.05 S/m and
the relative magnetic permeability x- = 1. Each power
cable is modeled as presented in Fig. 2.b, using a
simplified 4-layer cable model consisting of Al core
conductor (¢ =34.45-10° S/m and u, = 1), XLPE insulation
(6=1-10"" S/m and y, = 1), Cu shield (¢ = 58-10° S/m and
u-= 1) and HDPE cover (= 1-10"* S/m and x, = 1). The
thickness (#/) of the Cu shield layer is chosen so that it
matches the specified 25 mm? cross-sectional area.

The values of the wire-core currents (amplitude and
phase) are assigned using the software functionality
“Current Excitation”, whereas the shield bonding is
encoded in the model by the coupled electrical circuit in
Fig. 2c, where external windings are used for controlling
the induced shield currents. This electrical circuit was
defined with Maxwell Circuit Editor.

a)

HDPE cover, th=3.825 mm
Shield, #2=0.275 mm
XLPE insulation, t2 = 6.65 mm

LiWinding_shiald_1

Core conductor, = 7.7 mm

LWWinding_shield_2

LiWinding_shieid_3 |

b) 0)

Fig. 2. ANSYS Maxwell 2D model for computing
magnetic fields from power cables with two-point bonded
shields: a) global geometric model; b) simplified cable
model; ¢) coupled circuit for shield bonding

The applied boundary conditions are of Balloon type,
which models the region outside the defined space as
extending to infinity. In this case, the magnetic vector



potential, A, goes to zero at infinity; the magnetic flux
lines are neither tangential nor normal to the Balloon
boundary [14].

A fine mesh was defined for analysis, totalizing a number
of triangle elements in the order of 710000. The adaptive
setup was configured with a maximum number of passes of
10 and a percent error of 0.1. The convergence was set as
30% refinement per pass, minimum number of passes of 2
and minimum converged passes of 1. The adaptive

frequency was 50 Hz.
With this approach, ANSYS Maxwell 2D allowed us
generating  instantaneous  magnetic  flux  density

distributions in the cross section of the cable system (over
a period of 20 ms), as presented in Fig. 3a. The RMS
magnetic flux density at any desired height # above the
ground is determined by importing a sufficiently large
number of instantaneous magnetic flux density profiles
(Fig. 3b) in Microsoft Excel, where they are summed
together with the formula [15, 16]:
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Fig. 3. Example of simulation results: a) momentary
magnetic field distribution in the cross section of the
cable system (t = 15.55 ms); b) instantaneous magnetic
flux density profiles at h = 1 m above the ground

where Bi(i), ..., Bn(i) are the instantaneous values of the
magnetic flux density corresponding to the point i of the
profile and N = 73 is the total number of values. These
results will be discussed in Section V.

IV.  MODEL VALIDATION

In order to verify the numerical results obtained with the
proposed FEM model, an interactive software tool based
on the Biot-Savart law and superposition principle has
been developed. Based on the assumptions in Section I, the
total magnetic flux density at any measuring point (x, y) in
the vicinity of the cable system can be calculated as:

By = Yin 5 (L + L) |53 @)
?12 (1 +_Shl) [x = (3)
B=[IB| +1B", @

where /; is the phase current carried by the conductor
located at (x;, y4), Ly is the circulating current in the shield
located at (x;, 1), 1 =+/(x —x)%*+ (y —y;)*> represents
the distance between the conductor/shield and the
measurement point (x, y) and po = 4m-107 H/m is the
magnetic permeability of the free space.

If assuming the same phase sequence (I; = [ £ -120°,
L=120°and Iz =1 £ 120°), it can be shown that the
currents induced in the shields of a three-phase
underground cable system in flat formation have the
following expressions [17]:
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e Ry is the shield resistance at the considered
temperature, in {/m;

e Q= X—— w(M—M—m);

3

o P=X+X,=wM+M,):

e M=2-10"In (i) in H/m;
Tsh

e M, =2-10"7In2, in H/m.
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In the expression of M above, s is the spacing between
the centers of the adjacent conductors, in m, and ry, is the
mean of the outer and inner radii of the shield, also in m.

Finally, the shield resistance Ry, (at a shield temperature
t,) is calculated with the formula:

Ren =22 [1 + a0 (tsn — 20)]. (8)

where pgno 1s the electrical resistivity of the shield material
at 20 °C, Ay, is the shield cross-sectional area and oo is
the temperature coefficient of resistance at 20 °C. In our
case, at #y, = 22 °C, Ry, = 0.695 mQ/m.

All these mathematical equations, together with a field
mapping algorithm, have been implemented into a
LabVIEW program that generates lateral profiles of the
total RMS magnetic flux density, B, as well as of its
transversal components, By and B,, at any user-defined
height above the ground. The program also displays the
induced shield currents (RMS value and phase). Examples
of magnetic flux density profiles generated with this
simulation tool are presented in Fig. 4.
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Bx (uT)
By (uT)
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2 0.4

Lateral Distance, d (m)
Fig. 4. The total RMS magnetic flux density and its
transversal components at the height of I m
above the ground (analytical computation)

V. RESULTS AND DISCUSSION

A comparison between numerical simulation results and
analytical computation results (lateral profiles of the total
RMS magnetic flux density at the height of 1 m above the
ground, which is generally preferred in health-related
exposure studies when dealing with power-frequency
systems) is given in Fig. 5. Induced shield currents
calculated by both methods are given in Table 1 and
Table 2, respectively. As we can see, the results obtained
by the two methods correlate very well.
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Fig. 5. Comparison between numerical and analytical
results (RMS magnetic flux density profiles at the height
of 1 m above the ground)

Table 1. Induced shield currents obtained by numerical

simulation.
Current L RMS value Phase
No. (A) (A) )
1 -18.40+j12.26 22.11 146.32
2 -2.35-j15.13 15.31 -98.83
3 20.75+j2.86 20.95 7.85
Table 2. Induced shield currents obtained by analytical
computation.
Current L RMS value Phase
No. (A) (A) )
1 -18.30+j12.13 21.96 146.46
2 -2.31-j15.02 15.21 -98.75
3 20.61+j2.89 20.82 7.99

Lateral profiles of the total RMS magnetic flux density
at several heights above the ground, obtained by numerical
simulation, are presented in Fig. 6. As it can be observed,
the magnetic field at the centerline varies strongly, from
5.18 uT at 0 m to 0.63 pT at 1.5 m. Modifying the
grounding resistance (see Fig. 2¢) between 0.1 Q and 50 Q
has virtually no effect on the magnetic field distribution.

Fig. 7 compares lateral profiles of the total RMS
magnetic flux density computed with two-point bonded
shields and non-bonded shields, respectively (2=1 m). As
shown in this figure, the underground cable system with
two-point bonded shields produces a magnetic field that is
2.64% (2.63%, analytically) lower than the magnetic field
created by the non-bonded cable system.
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Fig. 6. Magnetic field from the three-phase underground
cable system at several heights above the ground
(numerical simulation)
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Fig. 7. Magnetic field from the three-phase phase under-
ground cable system with two-point bonded shields and
non-bonded shields, h = 1 m (numerical simulation)

Vertical profiles of the total RMS magnetic flux density
at the centerline, obtained by numerical simulation, are
presented in Fig. 8 (top dashed line — non-bonded cable
system; bottom solid line — bonded cable system).
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Fig. 8. Magnetic field at the centerline for two-point
bonded shields and non-bonded shields
(numerical simulation)

As it can be observed from the results presented above,
the magnetic field reduction rate for the analyzed three-
phase cable system is very low. However, for other cable
systems, depending on their geometry and the cable
characteristics, it may significantly increase.

VI.  CONCLUSIONS

The main achievement of this study consists in the
development and validation of a simple and effective
ANSYS Maxwell 2D model for computing and analyzing
magnetic fields generated by underground cable systems
with two-point bonded shields. Comparisons to analytical
computations based on the Biot-Savart law and
superposition principle revealed a very good agreement
between results. The proposed FEM model can be adapted
to calculate magnetic field distributions for any three-
phase cable layout, as well as for various cable groups,
taking into account influencing factors such as cable

spacing, burial depth, phase sequence, magnetic
permeability of soil, etc.
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