
25th IMEKO TC4 International Symposium 
23rd International Workshop on ADC and DAC Modelling and Testing 
IMEKO TC-4 2022  
Brescia, Italy / September 12-14, 2022 

Multiwavelet-based ECG compressed sensing 
with samples difference thresholding  

Jozef Kromka, Ondrej Kovac, Jan Saliga, Linus Michaeli 

Technical University of Kosice, Letna 9, 04200 Kosice, Slovakia 
e-mail addresses: {jozef.kromka, ondrej.kovac, jan.saliga, linus.michaeli}@tuke.sk 

 
Abstract – This paper introduces a novel Multiwavelet-
based hybrid method of Compressed sensing (CS). 
A case study of CS and reconstruction of Electro 
Cardio Diagram (ECG) signals with the presented 
method was performed. For ECG signals the proposed 
method does not require a wave position detector and 
can reconstruct the signal with minimal DC offset 
error. The method is completely patient-agnostic and 
does not require prior patient-specific information 
as well. The proposed method was evaluated using the 
MIT-BIT database. The obtained results show a good 
reconstruction quality while keeping a high 
compression ratio.  

 I. INTRODUCTION 

Remote health monitoring systems are becoming more 
important for doctors to perform long-term patient 
monitoring [1], [2]. They can help diagnose various health 
issues the patient may suffer with. One of the signals often 
measured by the remote health monitoring system is ECG. 
There are also others signals measured by the remote 
health monitoring systems [2], but the focus throughout 
this article will be on ECG signals. 

Remote health monitoring systems are usually 
composed of nodes. Nowadays, the most significant 
specification which poses the challenge is power 
consumption. Since nodes often use wireless transmission 
to communicate and transmit data, this step is the most 
power-demanding [3]. By utilizing signal compression, the 
number of transmissions can be reduced, which would 
save energy. Used compression should not be 
computationally difficult because that would significantly 
increase power consumption [4]. Standard compressions 
are performed by sampling the signal according to 
Shannon's theory. This signal is often processed to remove 
redundancy by decorrelation. Then only a few coefficients 
from the transformed signal need to be transmitted. This 
approach showed a good compression efficiency with 
a low error after reconstruction. But the standard 
compressions also have several drawbacks. For example, 
matrix multiplication which is used to perform 
transformation is power-demanding [5]. The compression 
which utilizes transformation works by prioritizing low-
frequency components of the signal over high-frequency 
components [6]. Compressed sensing [7] is a novel 

method of compression, which is not power-demanding as 
the standard compression methods [8]. It performs the 
compression directly while acquiring the signal. CS 
utilizes the signal sparsity to achieve sufficient 
compression and signal reconstruction at the sub-Shannon 
sampling rate. These properties of CS can be used to lower 
power consumption in remote health monitoring systems. 

In recent years, various methods for the application of 
CS directly to ECG signals were proposed. A hybrid 
encoding algorithm for real-time CS acquisition of ECG 
signals was introduced in [9]. The algorithm can be 
used for efficient ECG acquisition with a reduced 
computational load on the compressor. Dictionary-based 
CS reconstruction method was introduced in [10]. A novel 
approach for the optimization of a dictionary, which is 
used in ECG signal reconstruction was proposed. The 
results showed this dictionary can increase performance, 
over the standard trained dictionaries, due to lower 
redundancy. But these methods use the R peak detector 
which requires additional logic and computational power. 
In [11] a new greedy algorithm was proposed. This 
algorithm requires the support information about the signal 
to improve reconstruction quality. ECG CS method with 
high compression ratio and dynamic model reconstruction 
was proposed in [12], [13]. This method uses a QRS 
detector to detect the exact R wave position for signal 
segmentation before compression. The drawback of this 
method is that it requires the R peak detector and that it 
introduces a DC offset error to the signal between the 
frames. 

The proposed algorithm is based on Multiwavelets and 
a novel approach of CS sampling. The method was 
evaluated on ECG signals. For ECG signals this approach 
of CS does not require a wave position detector and can 
reconstruct the signal with minimal DC offset error. The 
method is completely patient-agnostic and does not require 
prior patient-specific information as well. 

The article is organized as follows: The second section 
introduces the theoretical background of CS and Discrete 
Multiwavelet transform (DMWT). The third section 
describes proposed CS sampling, and signal reconstruction 
algorithms. In the fourth section, the performance of the 
new algorithm was assessed using the MIT-BIH 
arrhythmia database. Finally, the conclusion and direction 
of future works are presented in the last section. 
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 II. THEORETICAL BACKGROUND 

In this section, the theoretical background of CS is 
explained. The basic theory of DMWT, used as the basis 
for sparse signal recovery, is presented in the latter part of 
this section. 

 A. Compressed sensing theory 
CS assumes that the signal can be represented by only 

K nonzero coefficients with a suitable basis, where K is 
much smaller than the signal length. This signal is called 
a sparse signal. Usually, the signals are sparse on some 
orthogonal basis [11]. Some signals do not show sparsity 
with an orthogonal basis. In that case, a dictionary 
basis [10] can be used to sparsify the signals. In both cases, 
the sparse representation of a signal can be obtained 
according to (1) 

 � � ���, (1) 

where � is a signal with length N, � is a N × N basis matrix, 
and � is the sparse representation of the signal. The sparse 
representation of the signal has length N, but only 
K coefficients are nonzero values.  

In CS, the signal is sampled not uniformly like in 
common signal acquisition methods. The signal is sampled 
according to the measurement matrix. The sampling can 
be defined by the following equation (2) 

 � � ���, (2) 

where � is a compressed measurement with length M, � is 
the M × N measurement matrix, and � is the signal with 
length N.  

If the signal � is sparse on some basis, and K < M << N, 
then the compressed measurement � contains enough 
information to reconstruct the signal �. The signal is 
reconstructed according to (1). The sparse representation 
of the signal can be obtained by substituting the signal � in 
(2) by expression (1) forming the following equation (3) 

 � � ����. (3) 

One of the requirements to be able to obtain the sparse 
solution to (3) is that the measurement matrix must be 
incoherent with the basis matrix. In other words, rows of 
measurement matrix can not sparsely represent the 
columns of the basis matrix [15]. Incoherency can be 
achieved by constructing the measurement matrix in a way 
that the signal is sampled at random places.  

Usually, in (3) the measurement and the basis matrix are 
substituted with the reconstruction matrix 	. The 
reconstruction matrix can be obtained according to (4) 

 	 � ���. (4) 

The size of the reconstruction matrix is M × N. By 
substituting the basis and the measurement matrix by (4) 
in (3) following equation (5) is obtained 

 � � �	�. (5) 

The equation (5) is used to find the sparse representation 

of the signal for the compressed measurement. Since there 
are N unknowns and M equations, and N > M, this system 
of equations is an undetermined system of linear equations.  

The solution to the undetermined system of linear 
equations is usually based on minimalization according 
to (6) 

 
��
�������� ������������ � 	�� (6) 

where ���� indicates �� norm. Initially, an �� norm was 
proposed in [7]. But among all possible norms, the �� norm 
is polynomial-time hard, highly unstable and the solution 
can be found only by brute force methods [13]. Thus using 
the �� norm was proposed in [16]. The �� norm problems 
can be solved by convex optimization algorithms, or by 
greedy algorithms. One difference between the algorithms 
is that greedy algorithms are suboptimal. Another 
difference is that they can reach an almost optimal solution 
with a lower number of computations compared to convex 
optimization algorithms [17]. The greedy algorithms 
usually require prior knowledge of how much the signal is 
sparse. The convex optimization algorithms do not require 
this prior information. The most used convex optimization 
algorithm is the basis pursuit algorithm [15].  The most 
used greedy algorithms are Orthogonal Matching Pursuit 
(OMP), Compressive sampling matching pursuit 
(CoSaMP), and Iterative Hard Thresholding (IHT) [15]. 

 B. Discrete Multiwavelet transform 
DMWT was developed as the result of the advancement 

in the development of Discrete Wavelet transform (DWT) 
and Wavelet theory. The main difference between DMWT 
and DWT is that DWT uses only one scaling and one 
wavelet function to approximate the signal, while DMWT 
can use up to   scaling and   wavelet functions. In the 
DMWT case, these functions are called multiscaling and 
multiwavelet functions. The advantage of DMWT over 
DWT is that the multiscaling and multiwavelet function 
has compact support, high smoothness, and high 
approximation order. Multiscaling and multiwavelet 
functions are symmetric as well as orthogonal [18]. They 
are represented as vectors according to (7) 

 
! � "!�� # � !$%& 

(7) � � "��� # � �$%&, 

where ! is the multiscaling function, � is the multiwavelet 
function,   is the multiplicity of multiscaling and 
multiwavelet function, and ' means transpose. As in 
the DWT case, these functions are not defined as shown 
in (7), but rather in the form of an impulse response. In the 
DMWT case, these impulse responses are defined as 
matrices with the size   ×  . In general (�")%# �(�"*% are 
the matrix impulse responses of multiscaling functions and (�")%# �(�"*% are the matrix impulse responses of wavelet 
functions. 

Multiwavelets used in the presented method are 
Donovan-Geronimo-Hardin-Massopust (DGHM),  BAT, 
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Chui – Lian (CL), Daubechies (DB), Symmetric 
Asymmetric of order 4 (SA4), and Haar Multiwavelet. 
These Multiwavelets were selected because they can be 
easily found in literature as well as they are implemented 
and ready to use in the following Multiwavelet 
toolbox [19]. The matrix impulse responses of these 
Multiwavelets with the corresponding literature can be 
found in [18]. 

To use DMWT as a basis for CS, the basis matrix needs 
to be constructed. The Multiwavelet basis matrix can be 
constructed similarly to the Wavelet basis matrix [20]. The 
Wavelet scalar impulse responses are replaced by 
the matrix impulse responses of Multiwavelets. The basis 
matrix then can be constructed according to (8). It is also 
important to keep in mind, that the constructed matrix will 
be   times bigger after substituting the coefficients of 
matrix impulse responses, into the designed basis matrix 

� +�,(�"*% (�"* � -% # (�")% # )(�"*% (�"* � -% # (�")% # )) ) (�"*% (�"* � -% # (�")%) ) (�"*% (�"* � -% # (�")%./�� (8) 

The basis matrix can be constructed in another way by 
using the DMWT on the columns of the identity matrix and 
rearranging the coefficients. With this approach, it is also 
possible to construct a multilevel Multiwavelet basis 
matrix. For the multilevel Multiwavelet basis matrix, 
multilevel DMWT should be applied to the columns of the 
identity matrix. The implementation of the DMWT and 
multilevel DMWT can be found in [19]. 

 III. THE PROPOSED CS ALGORITHM 

This section presents a novel hybrid method of CS. The 
section is split into two parts. The proposed method of CS 
on the transmitter side is introduced, in the first part. 
Subsequently, the reconstruction algorithm is explained in 
the following subsection. To perform DMWT and to 
construct the basis, a Multiwavelet toolbox for MATLAB 
was used [19]. To find the sparse solution according to 
equation (5) in the proposed signal reconstruction method, 
the CVX package for specifying and solving convex 
programs was used [21]. 

 A. CS performing 
The block diagram of the proposed ECG compression 

algorithm is outlined in Fig. 1. The ECG signal is acquired 
at the sampling frequency �0 and split into frames with 
constant length 1. From the frame, DC offset is removed 
and saved to the data block. The frame �2*3 is then filtered 
with the multiscaling impulse responses of chosen 
Multiwavelet. This filtration is performed 4 times, 
achieving 4th level of DMWT transform for only 
multiscaling coefficients. These multiscaling coefficients ���5 with respective length 1678 are stored for quantization 
and encoding as well as filtered with the inverse 
multiscaling impulse responses of chosen Multiwavelet. 
This filtration is also performed 4 times, achieving 4th level 

of inverse DMWT transform. The resulting signal will 
present the low-frequency component of the ECG signal. 
Low-frequency component ECG signal is then removed 
from the original ECG signal. After removal, a high-
frequency component ECG signal is obtained. 

 

Fig. 1. Block diagram of CS ECG signal acquisition 

The high-frequency component of ECG will be input to the 
block which performs the Samples Difference 
Thresholding. (SDT). SDT block performs the CS 
sampling and constructs the sensing matrix, used for the 
signal reconstruction. The SDT block computes 
the difference between the two samples, and if the 
difference is higher than the defined constant 9��then 
the latter sample is stored in a compressed measurement 
signal, and the position is stored in the sensing matrix. If 
the difference is less than 9� then only zero is stored in the 
sensing matrix. The SDT block also keeps track of the size 
of the compressed measurement signal. The SDT would 
never sample the first sample of the frame as well as it 
cannot evaluate the difference between the last sample and 
the first sample of the following frame. That is why the 
first and the last sample are stored automatically. The size 
of the compressed measurement signal is then directly 
stored in the data block. Compressed measurement 
signal �, together with the sensing matrix � and the 
multiscaling coefficients ���5 are then quantized and 
encoded with the arithmetic encoding. A linear 
quantization with a defined number of quantization levels 
was used. While evaluating the method, it was found that 
the histogram of the Compressed measurement signal and 
multiscaling coefficients is resembling the Gauss function. 
This information is used while performing the arithmetic 
encoding. The sensing matrix is stored in a form of 
a binary number with N bits. The binary number is then 
divided into the binary array with a length of 8 forming 
8-bit numbers. These 8-bit numbers are also encoded with 
the arithmetic encoder because they have big redundancy. 
DC offset, compressed measurement signal, length of 
the compressed measurement signal, multiscaling 
coefficients, and sensing matrix are then stored in the data 
block. 

 B. CS reconstruction 
The reconstruction method is outlined in Fig. 2. The 
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method is slightly different from the basic CS signal 
reconstruction. All data from the transmitted data block are 
decoded and then dequantized.  

 

Fig. 2. Block diagram of ECG signal reconstruction 

The compressed measurement signal, with the signal 
length and measurement matrix are used to reconstruct 
the high-frequency component of the ECG signal. 
The multiscaling coefficients are used to restore 
the low-frequency component of the ECG signal. The 
low-frequency and the reconstructed high-frequency 
component are then combined. In the end, the DC offset 
is restored and the final reconstructed ECG frame is 
obtained.  

 IV. EXPERIMENTAL RESULTS 

The proposed method was evaluated in the MATLAB 
environment using the MIT-BIH arrhythmia database [14] 
as a set of test ECG signals. The database contains 48 ECG 
records sampled at 360 Hz with 11-bit resolution. To 
evaluate the compression ratio (CR) of the proposed 
method following equation (9) was used 

 :; � 1<�= / (9) 

In equation (9), 1 is the frame length, <� is the bit 
resolution of the original signal, which is 11 in the case 
of the MIT-BIH database. The > represents the number 
of bits in the transmitted data block. The number of 
transmitted bits is calculated by adding the length 
of respective data according to (10) 

 
= � ��*?	@�8�"��5%AB C ��*@	D�EA C��*D	D�EE �C 7F�, 

(10) 

where �8�"��5% are multiscaling coefficients, � is 
a compressed measurement signal, � is a sensing matrix, 	DG (E means arithmetic encoding, and ��*DG (E is an 
operation that will return the length of the code. 2 times F� represents the DC offset information and the length of 
the compressed measurement signal. Another parameter 
used to evaluate the proposed method is the reconstruction 
error. Reconstruction error is evaluated with percentage 
root mean squared difference (PRD) given by (11) 

 H;= � -))I ��J � �KJ�5��J�5L
JM� � (11) 

where �J represents an original signal sample and �KJ�represents the reconstructed signal sample. The 

obtained error is a result of several factors. The first is the 
noise included in the MIT-BIH database. This noise is not 
present in the reconstructed signal, which influences the 
obtained error. The second factor is a quantization noise 
after quantization of the compressed measurement signal 
and multiscaling coefficients. And last is the error caused 
by the CS compression method. 

All the tests to evaluate the proposed method were 
performed on the first channel of all MIT-BIH database 
records. The parameters used during the test are listed 
in Table 1. 

Table 1. Parameters used during the evaluation 

Parameter Value Parameter Value 1 2048 
NOP8Q ���R�� 2 4 3 
��P8Q ���R�� -2 9� 0.03 
NOPSQ ���R�� 0.5 F8Q 6; 7 (64; 128 levels) 
��PSQ ���R�� -0.5 FSQ 6; 7 (64; 128 levels)   

where F8Q is the number of bits used to quantize the 
low-frequency component of the ECG signal. Similarly �FSQ is the number of bits used to quantize the 
high-frequency component of the ECG signal. The max 
and min  P8Q and PSQ levels represent the maximal and the 
minimal quantization level for respective ECG signal 
components. The evaluation was performed for seven 
Multiwavelets. For each Multiwavelet the evaluation was 
performed while using 6 and then 7 bits for quantization. 
The results are shown in Fig. 3. 

 

 

Fig. 3. PRD and CR results for a) 6-bit quantization, 
b) 7-bit quantization 

As expected, the results for 7-bit quantization have 
lower CR and lower PRD than the results for 6-bit 
quantization. Lower PRD is the result of a smaller 
quantization error. From all Multiwavelets evaluated, DB2 
and BAT01 Multiwavelets performed the best. Since 
DB2 Multiwavelet performed slightly better than BAT01 
Multiwavelet, the next section will be focused on 
experiments performed with DB2 Multiwavelet. 

The next experiment was focused on the influence of the 
quantization on the PRD and CR after reconstruction. This 
experiment was performed similarly to the previous 
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experiment but only with the use of DB2 Multiwavelet. 
The experiment was performed for 7 different numbers of 
quantization bits. The results are shown in Fig. 4. 

 

Fig. 4. PRD and CR results for DB2 Multiwavelet 

Both PRD and CR were rising with the use of fewer bits 
for quantization. For the 10 to 8 bits used for quantization, 
the PRD change was less than 0.1 %. From 7 bits, the PRD 
started to exponentially increase. The CR was steadily 
increasing throughout the whole experiment. The best CR 
to PRD ratio was achieved by using 8-6 bits for 
quantization. For ECG signals the proposed method could 
operate at 8-6 quantization bits depending on the required 
PRD and CR. In the next section, a case study for chosen 
ECG record will be performed.  

The visual comparison of the original ECG signal and 
reconstructed ECG signal for 6-bit and 7-bit quantization, 
with the use of DB2 Multiwavelet, is shown in Fig. 5.  

 

 

Fig. 5. Case study of ECG frame #1 a) Original ECG 
signal, b) Reconstructed ECG signal with 6-bit 

quantization and absolute error, c) Reconstructed ECG 
signal with 7-bit quantization and absolute error 

In Fig. 5, the detail of two heartbeats from the first frame 
is shown. The reconstruction error is shown as well. The 
obtained results for the first frame with 6-bit quantization, 

shown in Fig. 5 b), were as follows. The calculated PRD 
after the signal reconstruction was 6.982 % and CR was 
11.384. The obtained results for the first frame with 7-bit 
quantization, shown in Fig. 5 c), were as follows. The 
calculated PRD after the signal reconstruction was 
4.966 % and CR was 9.422. The exact position of R waves 
of the heartbeat in Fig. 5 was in both cases included. The 
reconstruction error was mostly influenced by the 
quantization and by the noise which is present in the MIT-
BIH database. The error after sparse signal reconstruction 
is present as well. The reconstructed signals in Fig. 5 are 
noiseless because the sparse signal recovery algorithms do 
not reconstruct the signal noise. The ECG signal in Fig. 
5. c) is smoother than in Fig. 5. b). It is directly influenced 
by quantization. In both cases, there is an error around the 
0.25-second mark. This error was caused by the signal 
reconstruction. But the error peak is lower than 80 μV 
which represents roughly 15 % error compared to peak to 
peak value of the ECG wave. Visually for the diagnostic, 
the error peak does not represent a significant error 
because it is a single value error. That peak error may be 
minimized by using more optimized method parameters. 

The last experiment was focused on the frame transition 
and R wave amplitude change. The algorithm removes DC 
offset from the frame and then after reconstruction 
DC offset is restored. This can distort the transition 
between frames.  

 

Fig. 6. DC offset error case study a) Original ECG 
signal b) Reconstructed ECG signal with absolute error 

The distortion between the frames was present in the 
previously proposed method [13]. The method proposed in 
this article does not remove only the DC offset but 
removes the low-frequency component of ECG as well. 
Thus the distortion between the frames is minimal. This 
can be shown in the transition between the 291 and 292 
frames of the mitdb121 record. The difference in DC offset 
is the biggest for this record. The detail of the transition 
between frames is shown in Fig. 6. The distortion is lower 
than 10 μV which is much less than in the previous method 
proposed in [13] where the DC offset error was more than 
100 μV for the same record.  
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 V. CONCLUSION AND FUTURE WORKS 

In this paper, a novel method of CS usable for ECG 
signals was introduced. The proposed method can 
reconstruct the ECG signal with sufficient quality to 
perform patient diagnostics while keeping high CR. The 
main advantage of the novel method is that it does not 
acquire prior information, patient-specific information, or 
any detector for ECG signal compression. 

Future work is directed to: (i) evaluation of the method 
for different signals, (ii) evaluation of other Multiwavelets, 
(iii) evaluation of nonlinear quantization, (iv) searching for 
optimal configuration for the proposed method, (v) 
implementation of hardware prototype. 
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