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Abstract – Wearable cardiac monitors can usefully con-
tribute to early detection of potential cardiovascular
pathologies, however ECG trace data streaming over
wireless links creates some significant challenges. We
propose a signal analysis approach based on a Gaus-
sian dictionary to model and compress ECG traces.
The algorithm operates on fixed-length segments, and
achieves effective compression for wireless data trans-
mission, associating just 10 bytes to each Gaussian fea-
ture. At the same time it enables accurate reconstruc-
tion of ECG traces from the reduced data set. We tested
our method on a set of 46 ECG recordings taken from
the Physionet MIT-BIH Arrythmia Database, obtain-
ing 90% data compression rates, while percent relative
deviation of reconstructed traces is always below 5%.

I. INTRODUCTION

Recent years have witnessed an explosive growth in

the availability of wearable cardiac monitoring devices,

from fitness trackers to medical grade monitors analysing

multiple-lead electrocardiogram (ECG) signals [1]. On ac-

count of their reduced impact on patient quality of life and

mobility, these devices can contribute to heart profile eval-

uation and enhance diagnostics. In particular, continuous

heart monitoring plays an important role in early detec-

tion of potential cardiovascular pathologies, that are a ma-

jor cause of death worldwide.

In a mobile context, data acquisition and processing de-

vices are tasked with delivering healthcare measurement

information to a data collection and analysis centre, most

likely a cloud-based one [2]. For instance, Bluetooth low-

energy (BLE) is often employed for short-range data trans-

mission from sensing units to a smartphone, the latter then

providing the link to a cloud-based application [3]. The

combination provides good throughput, while range is de-

pendent on wireless network coverage and transmission

endurance can be limited by energy consumption.

Unobtrusive long-term cardiac monitoring requires

guaranteed throughput to reliably transfer an accurate con-

tinuous flow of measured data [4], hence endurance and

transmission range need to be emphasized. It is also useful

to remember, as a reference, that one ECG channel sam-

pled at 500 Hz with 12-bit resolution produces 6000 bits

per second. This yields over 500 Mb per lead in a single

day [5], creating some significant challenges to mobile ap-

plications streaming data over wireless links.

Several papers have presented effective data compres-

sion algorithms for wireless applications [6, 7]. The focus

is on the use of simple, low complexity algorithms to re-

duce the amount of transmitted data and prolong sensor

battery life, while minimizing information loss [8]. How-

ever, compression is often treated as an independent prob-

lem, rather than by ECG-specific feature analysis [9].

Signals recorded during largely unrestricted daily life

activities can be affected by acquisition noise, motion and

electrode artifacts [10], placing greater emphasis on de-

noising. In this regard, compressive sensing (CS) ex-

ploits to advantage the underlying sparse-signal assump-

tions [11], [12]. Besides achieving useful compression ra-

tios, CS allows detection of significant ECG features di-

rectly from compressed data, dispensing with the need to

reconstruct waveforms first [5], [13]. On the contrary, tra-

ditional Holter recorders preserve information about whole

traces, enabling trained clinicians to carry out detailed

analyses of waveforms where the need arises. It might

be impossible to do this from compressed data, unless full

waveforms can be accurately reconstructed from them.

With these requirements in mind, we present a signal

analysis approach that provides an effective compression

scheme for wireless data transmission, at the same time

enabling accurate reconstruction of ECG traces from the

reduced data set. For this purpose we rely on signal mod-

elling by Gaussian kernels and exploit the fact that a low

number of suitable components suffices to accurately rep-

resent each cardiac cycle. This allows to meet different

challenges at the same time:

1. achieve greater robustness against noise and artifacts

in recorded traces;

2. support accurate and reliable trace interpretation for

analysis and diagnosis;

3. provide compact representations of trace data for

archiving, transmission and efficient analysis.

Advanced cardiac monitors can often run rather sophisti-

cated signal analysis algorithms, suggesting that comput-

ing power is generally available within edge devices to

support the monitoring framework we propose.
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II. WAVEFORM MODEL

A cardiac cycle corresponds to a sequence of elementary

waves representing different stages of activity (P wave,

QRS complex formed by Q, R and S waves, and T wave).

Each wave can be modelled by at least one Gaussian ker-

nel, that is, a function gσ(t) defined as:

gσ(t) =
1√
2πσ

e−
t2

2σ2 . (1)

To help describe asymmetries in P and T waves, the addi-

tion of a second kernel is suggested in the literature [14].

Therefore, in principle a QRS complex is modeled by three

Gaussian kernels, P and T waves by two kernels each, to-

talling seven.

The ECG trace is usually partitioned into segments con-

taining only a single heart beat, which requires preliminary

detection of peaks associated with the R waves. Single-

beat segmentation is critically dependent on the R-peak

detection algorithm running on the monitoring device. In

our approach we adopt instead fixed segmentation, that al-

lows to dispense with R-peak detection. ECG traces are

partitioned into segments represented by a sample vector

x = [x(n1Ts), . . . , x(n2Ts)]
T , where Ts is the sampling

interval, n1Ts < 0 < n2Ts with n2 − n1 + 1 = N , and

superscript ‘T’ denotes transposition. Segment length is

NTs regardless of the number of heart beats within.

The location and number of ECG wave complexes can

vary and is, in general, unpredictable, although an upper

bound based on physiological limits can be set. The model

then takes the form:

x(nTs) =
I∑

i=1

aigσi
(nTs − τi), (2)

where ai is the magnitude of the i-th Gaussian component,

σi is its shape (dispersion) parameter and τi the time posi-

tion relative to the start of the segment. For greater flexibil-

ity, we just set a generic upper bound I on the total number

of kernels within a segment.

The use of Gaussian mixture models was proposed in

[15] for the generation of realistic synthetic ECG traces

and in [14] for ECG compression and classification. Sev-

eral authors have since considered Gaussian models in

ECG-related works and adapted them to different pur-

poses, but identification of model parameters in (2) is a

non-linear estimation problem that is often associated with

computationally-intensive algorithms, ill-suited to a wear-

able context [16], [17].

An effective alternative is represented by dictionary-

based analysis. The basic idea is to provide a predefined

pool of Gaussian kernels, called a dictionary, where each

kernel is characterized by a different combination of pa-

rameters τ and σ. The analysis algorithm picks the ones

that best match model (2) for the given segment x. The use

Fig. 1. Main steps of the proposed framework.

of a Gaussian dictionary was shown to provide promising

results in the analysis of ECG traces [18].

Each dictionary element (atom) can be described as a

column vector of N sampled values of a Gaussian kernel:

g
(τh,σk)

= [gσk
(n1Ts − τh), . . . , gσk

(n2Ts − τh)]
T
.

(3)

where τh is a specific time position in a set of H allowable

values and σk is a specific dispersion taken from a set of

K possible choices. As a dictionary only allows discrete

sets of values for parameters σ and τ , correct design and

a suitable trade-off between the size of the dictionary and

waveform approximation accuracy are essential.

The generic dictionary matrix D has the form:

D = [Dσ1
Dσ2

. . . DσK
] (4)

where each N ×H matrix block contains H column vec-

tors g
(τh,σk)

characterised by different time shifts, but with

a common value of parameter σk. The size of the full dic-

tionary D is N ×M , with M = HK. Because of the way

D is built, the indication of column index m suffices to de-

termine values of both τ and σ, that is: g
(τh,σk)

= dm for

some m.

To find all the components of model (2) we apply an

orthogonal matching pursuit (OMP) recursive greedy al-

gorithm [19].

III. SEGMENTATION AND PROCESSING

Processing steps in the proposed approach follow the

straightforward sequence shown in Fig. 1.

A. Pre-processing
The acquired ECG trace is first pre-processed to remove

low frequency noise and baseline wander due to respiration

and motion artifacts. These components are first extracted

by applying two cascaded median filters. The first filter of
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200-ms width removes QRS complexes and P waves, the

resulting signal is then processed by a median filter of 600-

ms width to remove T waves [20]. The resulting output

contains baseline wander, that is then subtracted from the

original ECG signal.

B. Segmentation
Although fixed segmentation may appear straightfor-

ward, it calls for great care in dealing with edge effects. In

fact, it may happen that larger elementary waves are found

close to either end of the analyzed segment, resulting in

significant truncation of the relevant waveform.

Gaussian model (2) can adapt to a variety of waveforms

which, unfortunately, means that it is easily affected by

edge effects. The analysis algorithm attempts to replicate

truncation by concentrating as many Gaussian kernels as

needed close to the edge of the analyzed segment, result-

ing in local overfitting. Since a limited number of kernels

is allotted for each segment, this may cause sub-optimal

allocation and underfitting elsewhere in the segment.

The problem has been addressed as follows:

• head and tail edge extensions of the segment are in-

troduced to minimize truncation in Gaussian kernel

vectors within the dictionary;

• overlap is introduced between consecutive segments.

As a consequence, elementary waveforms subjected

to truncation are considered for both segments, but

only the better fitting is kept;

• the upper bound I is increased to account for overlaps

and discarded estimates.

Fig. 2. Segment structure, with edges and overlap areas.

The segment structure assumed for the algorithm is

shown in Fig. 2, where the cross-hatched parts at the

two ends represent the edge allowance for Gaussian atoms.

Edge width is equal to the maximum value assigned to

the dispersion parameter σ within the dictionary. Single-

hatched rectangles represent the overlap areas, that are the

same width as the edges.

Figure 3 refers to one of the ECG traces analyzed for

this work. For a 30-minute recording time, a trace is par-

titioned into 1042 segments, that are all superposed in this

figure. Estimated Gaussian kernel amplitudes αi are plot-

ted versus time position τi. This parameter was allowed to
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Fig. 3. Plot of Gaussian kernel amplitudes versus delays.
All segments of a single ECG trace are overlapped. Green
and red show overlap areas where estimated coefficients
are discarded.

vary over a range of 2 s, that is the full segment length, cor-

responding to 720 samples as shown, since the sampling

rate is 360 Hz. Edges are 48 samples long (approximately

130 ms), which is the same length as the overlap areas.

Analyzed segment length is actually 624 samples

(1.73 s), that is, the blue part of the plot in Fig. 3. Esti-

mates from this part of the segment can be streamed out

for wireless transmission. The halves of the leading and

trailing overlap areas, where coefficient estimates are dis-

carded, are shown respectively in green and red. Some co-

efficients in those areas are significantly larger, as a result

of the algorithm attempt to overfit truncated waveforms.

For the trace of Fig. 3 overlap areas where estimates are

discarded are little more than 14% of the range of delay

variation. On the other hand, discarded estimates are about

25% of the total provided by the algorithm. This confirms

the clustering effect caused by overfitting at the segment

ends and suggests that the overlap-and-discard approach

described above can deal with edge effects effectively.

C. Decomposition
Dictionary-based signal analysis centers on finding a

sparse solution to a matrix-vector equation, formally:

â = argmin
a

||a||0 subject to: ||x−Da||2 < ε (5)

where a is the vector of Gaussian kernel coefficients ai
and ε is a threshold value associated to the energy of the

residual r = x−Dâ.

The OMP iterative approximation algorithm can be

summarized as follows. After initializing the set of se-

lected dictionary column indexes to the empty set, S =∅

and the signal estimate to x̂=0, the algorithm is the itera-
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tive application of the following steps:

1. compute r = x − x̂, then select dictionary index:

m∗ = argmaxm |dT
mr|2

2. accordingly update the selected index set: S = S ∪
m∗ and the dictionary submatrix DS ;

3. compute a new amplitude estimate: âS =(
DT

SDS
)−1

DT
Sx ;

4. calculate the new signal estimate: x̂ = DS âS .

Iterations are stopped either when the maximum allocated

number of Gaussian kernels Imax has been reached, or

when percent relative deviation (PRD) of x̂ from the an-

alyzed segment x drops to 1% or lower.

Each OMP iteration step involves matrix-vector prod-

ucts, the computation of a pseudo-inverse of progressively

larger size and, above all, the search for a peak value over

a vector the same size as the dictionary column. Computa-

tional cost increases with the number of components mod-

elled by (2). Shorter segments can be processed faster, but

the number of segments gets larger and, with fixed over-

lap length, efficiency decreases. The selected 2-s segment

length appears to be a reasonably effective compromise.

For our trials MatLab running on a 2,6 GHz Intel Core

i7 quad-core processor took about 240 ms for the analy-

sis of a 2-s segment, which suggests real-time analysis is

achievable also with less-performing processors.

IV. MAIN RESULTS

To characterise the proposed approach we considered

the set of 30-minute ECG recordings provided by the MIT-

BIH Arrythmia Database, hosted at https://physionet.org
[21]. Specifically, we selected only traces from modified

limb lead II, as they were available for 46 records. Re-

sults thus refer to the analysis of nearly 48,000 segments

and over 100,000 heart beats, some of which are labelled

as anomalies.

A. Compression
For each Gaussian kernel modelling the trace, the algo-

rithm provides amplitude, dictionary column index and ab-

solute position index within the trace. The latter is the sum

of the segment start index and relative position τi within

the segment. Since amplitude accuracy is important we use

for this a 32-bit floating point format. Dictionary column

indexes are represented by unsigned 16-bit values, while

32 bits are needed for the position index. This means ex-

actly 10 bytes are needed for each Gaussian component.

Since heart rate and ECG trace shape can vary, it is eas-

ier to assess compression by comparing the size of ac-

quired traces with the corresponding sequence of param-

eter estimates. This shows that a 30-minute ECG trace
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Fig. 4. Comparison between original (blue) and recon-
structed (red) trace for a representative ECG segment.

taking about 1 Mbyte is converted into a data sequence

of approximately 100 kbytes. The resulting compression

ratio is around 90% and corresponds to less than 500 bits

per second, which is compatible with typical low-power

wide-area network data rates.

B. Waveform reconstruction accuracy
If the Gaussian model that describes the ECG signal is

accurate enough, the proposed algorithm enables to recon-

struct a trace without introducing artifacts. An example of

reconstruction for one of the ECG trace segments is shown

in Fig. 4, where it can be seen that some mild smoothing

has been introduced in the reconstructed trace.

Percent Root mean square Difference (PRD) is an index

of distortion caused by model approximation, defined as:

PRD = 100 ·
√∑

[x̂(nTs)− x(nTs)]
2∑

x2(nTs)
(6)

where x̂(nTs) is the signal reconstructed by the proposed

Gaussian model and summations extend over a whole

trace.
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Fig. 5. Percent relative deviation (PRD) for 46 analysed
traces from MIT-BIH Arrythmia Database (for trace inter-
pretation, usually 0-2% = very good, 2-9% = good) [22].
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PRD values are plotted in Fig. 5 for each of the recon-

structed traces. Even for the pathological traces contained

in the database they are always below 5%, which is con-

sidered to correspond to good trace quality [22].

V. CONCLUSIONS

Our model-based approach makes use of an algorithm

where accuracy and computational complexity can be

tuned to meet the needs of long-term ECG monitoring,

overcoming issues about acquisition and wireless transmis-

sion of signals by wearable devices.

The proposed signal analysis approach achieves signif-

icant data compression, allowing to send ECG trace data

as a stream at around 500 bit/s, which is sustainable by

low-power wide-area network devices in mobile applica-

tions. Gaussian kernels achieve accurate morphological

modelling of ECG traces, allowing accurate waveform re-

construction.
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