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Abstract – The line parameters available to the System
Operator can be quite different from actual values be-
cause of different reasons, such as aging, manufactur-
ing tolerance, environmental conditions, etc. Proposals
have been presented in literature to estimate line pa-
rameters and monitor their changes. Synchrophasor
measurements from PMUs have appeared as a possible
breakthrough for accurate estimation. A novel algo-
rithm has been recently proposed to estimate line pa-
rameters in presence of realistic systematic errors in
PMU-based measurement chains. This paper aims at
characterizing the robustness of the algorithm with re-
spect to possible mismatches of the models associated
to PMU measurement errors. Systematic and random
contributions are considered at different levels. Simu-
lations on an IEEE test network help in investigating
method robustness and possible limits.

I. INTRODUCTION

When dealing with power system management, several

applications are involved. Among others, state estima-

tion [1], fault location methods [2], etc. In all these ap-

plications, network models play a fundamental role and

line parameters are thus the basis of any further processing

or evaluation. In practice, line parameter values can sig-

nificantly differ from data available to Transmission Sys-

tem Operator (TSO) because manufacturing, installation

or ageing introduce model mismatches that can result in

Energy Management System issues. Measuring line pa-

rameters is thus a critical and challenging task, to which

phasor measurements units (PMUs) can contribute signifi-

cantly, since their outputs are direct, accurate and frequent

measurements of voltage and current phasors synchronized

to Coordinated Universal Time (UTC) and thus associ-

ated with an accurate time tag. TSOs have been installing

PMUs in the last decade to build the so-called Wide Area

Monitoring Systems (WAMSs), i.e., the new generation

distributed monitoring infrastructures for power systems.

Even if promising, the PMU is only one element of the

measurement chain, which includes also Instrument Trans-

formers (ITs), and thus line parameter estimates are af-

fected by measurement errors at different levels. In the

literature, different approaches to PMU-based parameters

estimation have been introduced recently. In [3], only

the PMU error is considered for a single line estimation,

while in [4] also ITs are considered, adopting an estima-

tion method based on direct application of PMU current

and voltage measurements available at both ends of the

line at a given time instant. In [5] and [6], multiple time

instants are considered, but IT errors are modeled as zero

mean random noise, thus neglecting systematic errors.

When IT systematic errors are not fully compensated,

which is a typical situation, line parameter estimation is

strongly affected. In [7], calibrated transducers are used

to propagate accuracy while estimating line parameters.

In [8] systematic errors of current amplitudes and voltage

phase angles are assumed negligible to simultaneously es-

timate line parameters and other systematic errors, while

[9] focuses on the detection of uncalibrated ITs in a pre-

liminary way.

In [10,11], an algorithm to estimate simultaneously line

parameters and systematic errors introduced by ITs was

presented, dealing with multiple lines at the same time and

with multiple operating conditions of the network. The

method relies on the definition of a measurement model

that considers both systematic and random measurement

errors and on prior knowledge on line parameters, IT and

PMU uncertainty. Considering the estimation framework,

potential issues can arise when a mismatch between con-

sidered prior information and actual deviations occurs.

In this paper, the role of systematic and random errors in

PMUs will be investigated. Indeed, PMU specifications do

not allow tuning prior information on systematic and ran-

dom errors in PMU measurement chain. For this reason,

the impact of PMU systematic errors on line parameters

estimation and their role in the compensation process of

the entire measurement chain need to be assessed. Perfor-

mance and robustness of the method [11] will be examined

through simulation on the IEEE 14 bus test system.

II. ESTIMATION FRAMEWORK

In the following, the algorithm proposed in [10] and ex-

tended in [11] to address several load scenarios is briefly

introduced with a focus on its assumptions and measure-
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Fig. 1. π-model of a transmission line.

ment model. An equivalent single-phase model is consid-

ered (see [9]), which adopts a π-model for each line as that

represented in Fig. 1. Fig. 1 also shows the considered

measurements, since vi, vj , iij and iji are the synchro-

nized phasor measurements (synchrophasors) of the start-

node voltage of the line (node i), of the end-node voltage

(node j), of the branch current from node i and of that

from node j, respectively. The measurements are assumed

available from two PMUs installed at both ends of the line

and correspond to the same time instant t = nTRR, which

identifies the PMU generic timestamp (TRR is the PMU

reporting interval). From Fig. 1, it is clear that the line pa-

rameters to estimate are the line resistance Rij , the line re-

actance Xij and the shunt susceptance Bsh,ij (equally split

into the two sides of the model).

The line parameter estimation algorithm is based on a

set of equations, corresponding to different timestamps and

involving the unknown line parameters and the measure-

ment errors. In particular, the four measurements avail-

able for each timestamp and for each line allow writing

two complex-valued equations: the first one expresses the

voltage drop across the line; the second one derives from

Kirchhoff’s Current Law. In detail, the following two

equations are considered:

vRi − vRj = (Rij + jXij)

(
iRij − j

Bsh,ij

2
vRi

)
(1)

iRij + iRji = j
Bsh,ij

2
(vRi + vRj ) (2)

where superscript R indicates the reference value of the

corresponding measured quantity. Equations (1) and (2)

define thus constraints for the line parameters based on ac-

tual values of voltage and current phasors at a given time.

Since we are dealing with a measurement process, ref-

erence values can be rewritten as functions of measured

synchrophasors, systematic and random errors as follows:

vRh =
vh

(1 + ξsys
h + ξrnd

h )
ej(−α

sys
h −αrnd

h )

≈ Vhe
jϕh

(
1− ξsys

h − ξrnd
h − jαsys

h − jαrnd
h

)
(3)

iRij =
iij

(1 + ηsys
ij + ηrnd

ij )
ej(−ψ

sys
ij −ψrnd

ij )

≈ Iije
jθij

(
1− ηsys

ij − ηrnd
ij − jψsys

ij − jψrnd
ij

)
(4)

where h ∈ {i, j}, Vh and Iij are the measured voltage

and current magnitudes, respectively, ξh and ηij indicate

the corresponding measurement errors, ϕh and θij are the

voltage and current phase angles measured by the PMUs,

and αh and ψij are the corresponding errors. Superscripts
sys and rnd are used to split the measurement errors in their

systematic and random components. All the errors are � 1
(their absolute values) and the approximated expressions

in (3) and (4) are obtained considering a first order approx-

imation with respect to measurement errors and thus ne-

glecting terms, even multivariate, with a degree > 1. An

equation analogous to (4) can be written also for the other

current in the opposite direction.

Systematic errors are unknown like the line parameters

and thus multiple pairs of equations corresponding to dif-

ferent timestamps and possibly to different operating con-

ditions of the network can be used to define a set of equa-

tions which is the basis for the estimation. In [10] and

[11], systematic errors are attributed to ITs, i.e., to voltage

transformers (VTs) and current transformers (CTs), while

PMUs are considered as affected mainly by random errors.

To simplify the estimation task, (1) and (2) are further

modified by considering line parameters as follows:

Rij = R0
ij (1 + γij)

Xij = X0
ij (1 + βij) (5)

Bsh,ij = B0
sh,ij (1 + δij)

where superscript 0 indicates the known values that are al-

ready available to the TSO, and γij , βij and δij are the

unknown relative deviations from them, which represent

the lack of knowledge.

Replacing then (3) and (4) into (1) and (2) and consider-

ing first order approximation (|γij |, |βij | and |δij | are also

� 1), a linear system of equations for branch (i, j) can be

written as

bij = Hij

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξsys
i

αsys
i

ξsys
j

αsys
j

ηsys
ij

ψsys
ij

ηsys
ji

ψsys
ji

γij
βij

δij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+Eij

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξrnd
i

αrnd
i

ξrnd
j

αrnd
j

ηrnd
ij

ψrnd
ij

ηrnd
ji

ψrnd
ji

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Hijxij +Eijeij = Hijxij + εij (6)

where bij is the real-valued vector of constant terms (rep-

resenting equivalent measurements) derived from (1) and

(2) when real and imaginary coordinates are considered.

bij includes multiple sets of equivalent measurements cor-

responding to (1) and (2) for each considered timestamp.

The unknowns are common to all the timestamps and thus
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xij is the vector of unknown quantities, which are all the

parameter deviations and systematic errors. Vector eij in-

cludes all the random errors, while Hij and Eij are the

measurement matrix and the random error transformation

matrix, respectively. The former links equivalent measure-

ments in bij to xij and the latter computes the associated

equivalent random errors (included in εij) from eij .

Using Nt timestamps and four equations for each times-

tamp, we have 4Nt equations for each branch. It is possible

to consider also multiple branches (e.g. Nbr branches) to-

gether in the same estimation process. In this case, for the

same timestamp, we have all the voltage and current mea-

surements of all the considered branches and thus we can

define an augmented model with 4NtNbr equations. In-

stead of the vector of the unknowns for a single branch, we

have a vector x of N unknown quantities corresponding to

all the parameter deviations of the lines (3Nbr unknowns if

all the branches have the same model as in Fig. 1) and to

all the systematic errors of the measured synchrophasors.

Since joint branches share the same node voltage measure-

ments, the number of systematic errors in x can be < 8Nbr.

In addition, prior knowledge on the unknowns can be con-

sidered, thus defining an overall model as follows:

btot =

⎡
⎢⎢⎢⎣

bi1j1
...

biNbr
jNbr

0N×1

⎤
⎥⎥⎥⎦ =

[
H
IN

]
x+

[
Ee
eprior

]
(7)

= Htotx+ εtot (8)

where bikjk includes the equivalent measurements of the

kth considered branch (k = 1, . . . , Nbr), while H and E
are the measurement and transformation matrices obtained

considering all the branches and the corresponding equa-

tions like those in (6). Vector e is composed of the random

errors for all the measured synchrophasors, 0N×1 is the

N -size zero vector and IN is the N -size identity matrix.

Prior values are given by 0N×1 since they are all zeros

(best assumption on deviations and systematic errors with-

out further information) and eprior includes the correspond-

ing prior errors. Prior errors represent lack of knowledge

and can thus be treated as random variables as discussed in

Section III.

Starting from the model defined by (8), it is possible to

estimate all the unknowns, i.e., to achieve an estimation of

line parameters and systematic errors simultaneously for

all the lines and measurement channels without requiring a

preliminary calibration. A Weighted Least Squares (WLS)

solution of (8) can be obtained by solving the following

system:

(HT
totWtotHtot)x̂ =

(
HT

totWtot

)
btot (9)

where ˆ indicates the estimate and Wtot is the weighing

matrix, which is the inverse of the covariance matrix of

random vector εtot, indicated as Σεtot in the following.

III. MEASUREMENT ERRORS AND PRIOR

INFORMATION

Considering prior information on the unknowns and ran-

dom errors of PMU measurements as uncorrelated, it is

possible to write:

Σεtot
=

[
Σε 0
0 Σeprior

]
(10)

where symbol Σ represents a covariance matrix (of the

vector reported in the subscript), ε = Ee and 0 stands for

a zero matrix of suitable size. From the law of propagation

of uncertainty it follows

Σε = EΣeE
T. (11)

To define Σe we have to consider all the random errors

ξrnd
ik

, αrnd
ik

, ξrnd
jk

, αrnd
jk

, ηrnd
ikjk

, ψrnd
ikjk

, ηrnd
jkik

and ψrnd
jkik

for all the

considered branches (ik, jk). In [11], these errors were as-

sumed uncorrelated and associated with PMU uncertainty.

Thus Σe was diagonal and included all the square standard

uncertainties derived from PMU specifications (e.g., using

maximum magnitude and phase-angle errors from instru-

ment datasheet and assuming uniform distributions). To

define Σeprior
, two different considerations can be made:

• Prior variances σ2
γikjk

, σ2
βikjk

and σ2
δikjk

are assumed

from general considerations on the uncertainty of line

parameters (e.g. relying on the TSO experience).

Line parameter deviations are assumed uncorrelated

(if further information is available, it can be integrated

seamlessly). A mismatch between actual uncertainty

and assumed values can occur and in [12] such issue

is thus deeply investigated.

• Systematic errors in the measurement chain are con-

sidered uncorrelated (also in this case, if any prior

knowledge is available it can be integrated). As

mentioned above, in [11], systematic errors were at-

tributed mainly to ITs and thus the variance of each

error was derived from the IT class specification.

The presented assumptions allow computing Σe and

Σeprior
and thus solving (9), but they might lead to pos-

sible issues in the algorithm configuration. Indeed, the

measurement error of PMUs can be actually composed of

both systematic and random errors and this would result

in a transfer of uncertainty from Σe representing random

error only to Σeprior
. However, the amount of each error

contribution is difficult to predict. For this reason, in the

next section, the problem of uncertainty model mismatch

and the robustness of the method against it are investigated

by considering different PMU uncertainty scenarios while

keeping the base configuration of the method.
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Fig. 2. IEEE 14 bus system with node and branch indices.

IV. TESTS AND RESULTS

A. Test assumptions
Tests have been performed via MATLAB simulations

considering the IEEE 14 bus system (Fig. 2, [13]) and lim-

iting the analysis to the first six branches (involving the

first five buses). The algorithm is configured to work on all

the branches simultaneously, considering Nt = 100 mea-

surement timestamps for each estimation. In particular, 10

repeated measurements of the same load condition and 10

different load conditions (10 cases) are used for each test.

To assess the performance in each scenario, NMC =
10000 Monte Carlo (MC) trials are used. In each trial,

starting from a reference load condition, a powerflow is

computed considering the actual line parameters to obtain

the reference value of each measured quantity.

For each MC trial, the following conditions are consid-

ered:

1. The line parameters Rij , Xij and Bsh,ij are extracted

from a uniform distribution with a maximum devia-

tion of ±15% from R0
ij , X0

ij and B0
sh,ij , respectively

(i.e., nominal values of the network).

2. All ITs are of Class 0.5 and thus maximum voltage

and current magnitude errors are 0.5%, while maxi-

mum phase-angle displacements are 0.6 crad for VTs

and 0.9 crad for CTs, respectively. Actual IT errors

are extracted from uniform distributions.

3. The PMUs are compliant with the synchrophasor

standard IEC/IEEE 60255-118-1:2018 [14]. Maxi-

mum errors for magnitudes (Δmag) and phase angles

(Δang) for both voltages and currents are assumed to

vary from Δmag = 0.1% and Δang = 0.1 crad (PMU

accuracy A, in the following) to Δmag = 0.707%
and Δang = 0.707 crad (PMU accuracy B), depend-

ing on the test1. For each test, the values of Δmag and

1PMU accuracy B corresponds to about 1% maximum total vector

error (TVE) for synchrophasor measurement.

Δang are numerically the same and are referred to as

‘PMU accuracy’ for the sake of brevity. In the differ-

ent tests, percentage p ranging from 0% to 75% of

systematic error has been associated with the PMU,

for voltage and current measurements. This defines

the maximum PMU systematic error of the measured

quantity as follows:

Δsys
mag =

p

100
Δmag (12)

Δsys
ang =

p

100
Δang (13)

PMU systematic errors are extracted from uniform

distributions whose ranges are thus ±Δsys
mag and

±Δsys
ang for magnitudes and phase angles, respectively.

PMU random errors are instead extracted from uni-

form distributions for each of the Nt timestamps

in the trial and the considered maximum deviations

are given by Δrnd
type = Δtype − Δsys

type, where type ∈
{mag, ang}.

4. The active and reactive power of loads and generators

vary within ±10% (uniform distribution) of nominal

value for all 10 cases in a trial.

In each MC trial, the systematic errors of the measure-

ments are then the sum of two contributions, from IT and

PMU.

B. Systematic errors estimation and compensation
To understand the impact of different values of p, we

first focus on systematic error estimation. Figure 3 reports

the average percent root mean square errors (RMSEs) of

voltage magnitude systematic error estimation, i.e. the av-

erage on the nodes of the RMSE of ξsys
h (h = 1, . . . , 5) es-

timates. This quantity represents also the root mean square

residual compensation error and thus gives an idea of the

capability to estimate the systematic component of the

measurement chain. The results are obtained with PMU

accuracy A and reported for different percentages of the

PMU systematic error.

In Fig. 3, the RMSEs are compared with prior standard

deviations, i.e., with the original standard uncertainty of

ξsys (the generic node voltage magnitude systematic error),

which is computed across all MC trials based on the ex-

tracted systematic errors and then averaged on the nodes.

Prior values only slightly increase with p because, with

Δmag = 0.1%, the additional contribution to systematic

error brought by the PMU is much lower than IT contribu-

tion (σ
ξ

sys,VT
h

= 0.5/
√
3%). Average RMSE slightly de-

creases instead because PMU random errors decrease with

higher p, thus confirming that, notwithstanding the mis-

match in prior definition, the algorithm is still able to es-

timate the overall systematic error (which is reduced with

respect to prior of about 49%, in absence of systematic er-

ror in PMU, and of about 52% when p = 75%). Similar
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estimation
prior

Fig. 3. Average RMSE of voltage synchrophasor magni-
tude estimation with a varying percentage of the PMU sys-
tematic error (PMU accuracy A).

considerations hold true also for voltage phase angles, and

for current magnitudes and phase angles.

Figure 4 shows the same type of results obtained with

PMU accuracy B. In this case, the contribution of PMU

systematic errors is much larger, as proven by increasing

prior values. Nevertheless, the algorithm is still able to

reduce significantly the overall systematic error and the

RMSE reduction with respect to prior is even larger with

higher values of p, thanks to the reduced random contribu-

tion. In particular, the RMSE reduction is above 37% for

p = 0%, then it increases with p reaching the maximum

improvement of about 44% for p = 75%.

estimation
prior

Fig. 4. Average RMSE of voltage synchrophasor magni-
tude estimation with a varying percentage of the PMU sys-
tematic error (PMU accuracy B).

C. Line parameter estimation
Previous results have shown that systematic errors in the

measurement chain can be reduced significantly regardless

of their origin and of possible lack of prior knowledge.

However it is important to understand the effect of mis-

match on the main target of the estimation, i.e., line pa-

rameters.

Figure 5 shows an example of the results on line param-

eters. Average percent RMSE values are reported for the

estimates of γik,jk (k = 1, . . . , 6) when PMU accuracy and

p vary. As a term of comparison, prior values are always

the same and equal to 15/
√
3 = 8.66% (with slight vari-

ations when deviations are actually extracted during MC

trials). The results are extremely interesting and need to be

carefully interpreted. First of all, the estimation accuracy

increases with PMU accuracy as expected. Second, the im-

pact of p is not straightforward. For low PMU accuracies,

as mentioned before, PMU systematic error doesn’t affect

significantly the overall systematic error and thus the main

impact is given by the reduced random contribution (with

increasing values of p). It is also important to remember

that, since the overall systematic error is the sum of two

uniform distributions and the PMU contribution changes

with p, the resulting trapezoidal distributions of systematic

errors can differ significantly. When PMU accuracy de-

grades, the contribution of systematic error becomes more

relevant and comparable with IT contribution. For this rea-

son, resistance estimation starts to degrade with higher p
even if the random contribution is reduced (see PMU ac-

curacy B). However the maximum RMSE increase is less

than 6% with p = 75% and worst PMU accuracy, thus

confirming the robustness of the method also to measure-

ment model tuning degradation (higher prior mismatch).

Fig. 5. Average RMSE of line resistance deviation with a
varying percentage of the PMU systematic error and vary-
ing PMU accuracy.
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V. CONCLUSIONS

In this paper, a recently proposed algorithm for trans-

mission line parameters estimation relying on WAMS tech-

nology has been analyzed from the viewpoint of PMU

measurement error model. Tests performed have shown

that the systematic contribution of PMUs can be grasped

by the estimation when highly accurate instruments are

considered. When less accurate devices are used, the ef-

fect of additional systematic errors emerge. However, the

impact of model mismatch is still low thus pointing to the

algorithm robustness. These results are thus promising for

method’s applicability in real-word scenarios.
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