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Abstract – Estimating the state of charge of batteries is
a critical task for every battery-powered device. In this
work, we propose a machine learning approach based
on electrochemical impedance spectroscopy and convo-
lutional neural networks. A case study based on Sam-
sung ICR18650-26J lithium-Ion batteries is also pre-
sented and discussed in detail. A classification accuracy
of 80% and top-2 classification accuracy of 95% were
achieved on a test battery not used for model training.

I. INTRODUCTION

Many battery-powered devices such as laptops, smart-

phones, cameras, tablets, cordless shavers, lawnmowers,

drones, and even electric cars are now part of our daily life.

In most battery-operated systems, knowing the remaining

charge within the battery is essential for end-users. In ad-

dition, the knowledge of the remaining battery capacity

is fundamental for its management because states of ex-

tremely high or extremely low state-of-charge (SOC) can

irreversibly damage the battery [1]. The relationship be-

tween the battery’s observable signals and the estimated

SOC is highly non-linear, varying with temperature and

discharge/charge currents [2].

There is no practical method for SOC direct measure-

ment outside laboratory settings [3]. Therefore, many re-

search works have been conducted over the last decades to

develop a secure, practical, and reliable method for SOC

estimation [4, 5].

The data-driven SOC estimation approaches require lim-

ited knowledge about internal battery characteristics. In

contrast, model-driven approaches require an in-depth un-

derstanding of the battery’s internal chemical ed electrical

characteristics. Model-based methods also require the as-

sumption that the battery model is accurately established.

This condition is hard to realize in real applications due to

the effect of measurement noise and model parameter drifts

with aging, and temperature [3]. Combining some a-priori

information, embedded in physical electrochemical mod-

els or electrical equivalent circuit models, with experimen-

tal data, model-based approach can result in reliable and

accurate predictions [6]. However, they require extensive

domain knowledge and relatively long development times.

Common model-based approaches in recent publications

include the usage of Sliding Mode Observer, Luenberger

Observer, Kalman filters, Electrochemical Model, Equiva-

lent Circuit Model, Electrochemical Impedance Model [7].

Data-driven approaches, such as those based on machine

learning (ML), are becoming more popular for estimat-

ing the SOC and battery state-of-health (SOH) due to the

greater availability of battery data and improved comput-

ing power capabilities. SOC estimators based on neural

networks (NN) have been studied extensively in the litera-

ture. When using the NN model, a large amount of known

input data and expected output data obtained from the bat-

tery charging and discharging experiments is required to

train the network and extract the fitting relationship with-

out an a-priori model of the battery.

Traditional ML techniques contain no more than one or

two layers of non-linear and linear transformations. With

the advent of faster computational power and an abun-

dance of available real-world data, more complex archi-

tectures were investigated, which, in many cases, allowed

researchers to make striking improvements in many appli-

cations. The deep learning architecture used in this work,

called a deep residual network, won the 2015 ImageNet

challenge with an error rate of 3.57% which even surpasses

human-level accuracy valued at 5.1% [8] for the same task.

II. MATERIALS AND METHODS

A. SoC estimation using Electrochemical impedance
spectroscopy and Convolutional Neural Networks

Electrochemical impedance spectroscopy (EIS) is a

powerful tool for monitoring SOC and SOH of recharge-

able batteries [9]. It provides an estimate of the equiva-

lent battery impedance Z(f) by, e.g., measuring the volt-

age variations at the battery contacts after a varying input

current is applied. Visual representation of the results is

often obtained by plotting the negative imaginary part of

Z(f) vs its real part.

Although it is easy to observe that different SOC values

generate different shapes in EIS visual representations, the

relationships between SOC and Z(f) are not obvious. This
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Fig. 1. Normalized EIS curve comparison. The shape of the curve is specific for each SOC internal state

is shown in figure 1 that is based on measurements of the

Z(f) of ten rechargeable batteries, characterized by three

different SOCs.

Finding a closed-form derivation of this relationship ap-

pears an unfeasible task. However, we can approximate

this unknown function by extracting information from ex-

perimental results. We can easily spot some differences in

the visual representation of experimental data from differ-

ent SOC conditions. EIS curves measured at the same SOC

level show similar shape patterns, but exhibit translations

in the complex plane. The magnitude of the translation

varies for different batteries and even for the same battery

across different measurements (figure 2). Using an ML-

based approach to relate SOC to EIS-derived data requires

the assumption that the EIS shape patterns depend on SOC

and are invariant given the same battery type.

Convolutional Neural Networks (CNN) provide the

three primary advantages for image processing [10] over

the traditional feed-forward neural network with fully con-

nected layers. Firstly, they have sparse connections instead

of fully connected connections, which lead to reduced pa-

rameters and allow for processing high-dimensional data.

Secondly, weight sharing across the entire image reduce

memory requirements and causes translational equivari-

ance property. Thirdly pooling layer bring invariance to

the local translation property. The invariance and equiv-

ariance properties make CNN an ideal candidate for per-

forming classification tasks on EIS curves such as those

graphed in figure 2. Given that deep CNNs are the de-facto

Fig. 2. Comparison of measured EIS curves at SOC 10%.
Original data (on the left) and normalized (on the right).
EIS curves are similar in shape, but are translated. In one
case, the translation is much more relevant

industry standard solution for image classification tasks,

with many well-known architectures and pre-trained mod-

els available, we developed a CNN-based SOC estimator

for EIS curves visual representation images.

B. Electrochemical impedance spectroscopy data acqui-
sition

We are using a Keysight U2351A data acquisition board

to provide the excitation signal by means of a 16-bit dig-

ital to analog converter (DAC) and to acquire the current

and voltage signals by means of two 16-bit analog to dig-

ital converter (ADC) channels. The excitation signal is

a random-phase multisine, i.e. the sum of harmonically-

related sinusoids [11] that allows to simultaneously excite

the battery at a wide range of frequencies. In this case, the

excited frequencies are 0.05, 0.1, 0.2, 0.4, 1, 2, 4, 10, 20,

40, 100, 200, 400, and 1000 Hz in all measurements. The

excitation signal generated by the DAC is converted to a

current signal by a voltage-to-current converter custom cir-

cuit [12]. The current signal is measured across a known

shunt resistor. The voltage signal across the battery is also

measured by a second INA connected to the second ADC

channel. The current and voltage signals acquired by the

ADC channels are transferred to a PC to compute the dis-

crete Fourier Transform (DFT) and calculate the complex

impedance value at each excited frequency. The current

amplitude at each excited frequency was 50 mA, which re-

sulted in a measurement uncertainty of approximately 0.1

mΩ, as characterized in [13].

C. SOC estimation as a machine learning classification
task

In machine learning, classification is the task of pre-

dicting the class to which an object belongs. Each object

is uniquely represented by a set of values x1, x2, . . . , xl,
known as features in ML jargon. The l feature values,

stacked together, in the common ML notation are labeled

as the feature vector x ∈ Rl. The goal is to design a clas-

sifier f(x), so that given a values in a feature vector x we

will be able to predict the class of witch the object belong.

To formulate the task in mathematical terms, each class is
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Fig. 3. EIS of battery is measured at different SOC using
the system presented in [13]. The complex impedance val-
ues are then encoded in 2D visual representation to feed
the convolutional neural network.

represented by the class label variable y and ŷ denotes the

predicted class given the value of x and the set of possible

predicted classes in the so-called vocabulary:

ŷ = Φ(f(x)), (1)

where Φ(·) is a nonlinear function that maps any possible

f(x) values to one on the class labels.

The set of possible SOC class vocabulary considered in

this work is 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%,

20%, and 10%.

The raw features vectors is made by com-

plex impedance values measured at frequencies

[0.05, 0.1, 0.2, 0.4, 1, 2, 4, 10, 20, 40, 100, 200, 400, 1000]
Hz for a specific SOC. A two-dimensional visual repre-

sentation of the impedance curve in the complex plane is

used to build a 2D feature vector for each measured EIS

(Figure 3).

D. Training and test dataset
We compiled and published two open-access dataset

[14],[15] of data obtained through EIS, by measuring ten

brand new Samsung ICR18650-26J lithium-Ion batteries at

different SOCs. A detailed description of the measurement

system is available in [13].

Two sets of EIS measurements have been kept out from

training and validation as a test dataset for the final system

performance assessment. These two test cases are repre-

sentative of two different scenarios: 1) a new set of EIS

data on battery that was originally included in model train-

ing; 2) A set of EIS originating from a battery never seen

by the model during training and validation.

For the new battery test case we randomly choose one

of the ten batteries. Battery 10 was among data in [14]

and battery 06 among data in [15] For the new measure-
ment test case we randomly choose a set of EIS from one

measurement cycle. Measurement 10 on battery 01 was

selected among data in [14] and measurement 8 on battery

05 among data in [15]

E. Training and validation workflow
We have developed a fully automated pipeline for train-

ing deep learning-based classifiers using the open-source

libraries PyTorch and FastAI [16]. The workflow consists

of three steps (Figure 4):

1. Step 1: data acquisition;

2. Step 2: data selection;

3. Step 3: model training.

The Data acquisition step produces a CSV file contain-

ing EIS spectra at each SOC. In Data selection the avail-

able data are split in training ad test datasets. The test

dataset will only be used for test and not for training. The

training dataset will be further split to hold out 20% data

for validation. We implemented different training strategy

for the model training step. In this work, we performed two

different experiments adopting the validation hold strategy

for the first one and the leave k-out cross validation strat-

egy for the second one. In the validation hold experiment

we trained a single model using 80% of the available data,

while 20% of the data was set aside and used exclusively

for validation. The performance of the model was then

verified using the test dataset containing completely new

measurements. In the second experiment we implemented

the leave k-out strategy as leave one battery out to investi-

gate the model performance dependency from a particular

choice of training data-set and effects of specific battery

inclusion in the training process. We run ten training ses-

sions excluding data related to one of the batteries each

time. This experiment produced ten trained models that

can be used alone or combined in an ensemble model for

SOC inference.

We published all the algorithms developed for this work

in the open-source python ML Measurement library [17].

We also created several Jupyter notebooks with the high-

level experiment workflow orchestration script executable

on free Google Colab machine learning compute platform

for easy experiment repeatability. The notebooks take ad-

vantage of the free Google Drive private storage associated

with the user’s account to store all trained models and gen-

erated images. While paid service subscriptions include

more computational resources, the hardware and software

configuration available with the free service allows run-

ning all experiments from scratch within a few hours. The

notebook itself provides the installation of missing soft-

ware components in the setup phase.

F. Efficient deep CNN training for SoC estimation
Many pre-trained deep learning models have proven ad-

equate for image/video classification tasks. We chose the

ResNet18 CNN because the residual network architecture

achieves good results in image classification tasks and is
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Fig. 4. SOC estimator training and validation workflow overview. The same workflow was applied to both dataset [14]
and [15]

relatively fast to train [18]. Transfer learning from general-

purpose image classification pre-trained models allows fast

fine-tuning training of the deep CNN model. The optimal

learning rate for training has been estimated with the Cycli-

cal Learning Rates method [19] to avoid time-consuming

multiple runs to perform hyper-parameters sweeps. The al-

gorithm implementation in the FastAI library suggested a

learning rate in the range 10−2 − 10−3. We perform the

model fine-tuning with a sequence of freeze, fit-one-cycle,

unfreeze, and fit-one-cycle operations using the discrimi-
native learning rate fine tuning method developed in [20]

and implemented in FastAI library [16].

After some tests, we set the training script to run for fifty

epochs, although, in many case cases, few epochs would

suffice.

G. Data Augmentation
For model training, we developed an ad-hoc data aug-

mentation technique based on simulating additional mea-

surements by adding white Gaussian noise within the un-

certainty band estimated in [13]. The training pipeline gen-

erates for each available EIS spectrum K different visual

representations with K equal to the augmentation factor

parameter set in the experimental setup. The results shown

in this article were obtained with K = 10.

H. System calibration
Experimental data revealed high variability across dif-

ferent batteries and also significant differences between

measurements on the same battery at different times. For

a field application, it is, therefore, necessary to tune the

estimation model each time the battery is replaced and pe-

riodically to compensate for changes in the internal state

of the battery that occur over time. This procedure can be

performed as part of a periodic calibration procedure using

hardware onboard the device or a dedicated external in-

strument that may be included in the docking station of the

device. (e.g., in the charging station of an electric vehicle).

III. RESULTS

A. SOC curve analysis
Observing the visual representation of the EIS data re-

sulting from the data pre-processing (Figure 3), we can see

that are shape variations across different SOC for the same

battery but also for the same SOC across different batteries

(Figure 5).

B. Model validation
The SOC estimator model trained in the validation hold

experiment achieves up to 100% accuracy score on the

validation dataset. The accuracy depends on the amount

of measurement noise used for data augmentation. Using

a realistic amount of AWG noise according to the uncer-

tainty band of the impedance measurement system esti-

mated in [13], the model trained using data from the second

dataset achieves an overall 87% accuracy The three mod-

els trained in the leave one battery out experiment achieved

accuracy scores between 88% and 89%.
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Fig. 5. EIS curves of two battery at SOC 10%, 30% and
90% with differences across SOC for the same battery and
across batteries for the same SOC.

To verify that the SOC estimation produced is based on

a reasonable set of image features, we compute the class
activation map (CAM) [21] on some inference results us-

ing the implementation we published in [17]. CAMs allow

to visually highlight the image areas that were more rele-

vant to the final classification performed by a specific im-

age classification neural network. The resulting heat map

(Figure 6) shows that the main contributions to the SOC

classification came from the peak and valley areas of the

curves, whose shape changes with SOC.

C. Test in a SOC measurement system
We deploy the training model in an inference pipeline to

simulate the usage in a real SOC estimation system. In a

real application, the model training should be performed

during the system calibration procedure to fine-tune the

model on the actual battery that must be monitored. To

evaluate the SOC estimator performance on realistic con-

ditions we arrange two different test cases, representative

of several use cases of the system:

1. New battery test: SOC estimation of a battery similar

(same model) to the batteries used for model training

but never connected to the system before.

2. New measure test: SOC estimation of one of the bat-

teries used for training a few days after initial system

calibration.

Model trained during both in leave one battery out and

validation hold experiments was evaluated on the two test

cases. In the real-world use of a battery system, an ac-

curate estimate of SOC is often not necessary. In addi-

tion, impedance measurements are affected by several fac-

tors (such as temperature) that prevent accurate data from

being obtained. Based on this consideration, k-accuracy

in addition to accuracy, was used to evaluate the mod-

els. Multi-class classification metrics was computed using

functions implemented of SciKit Learn [22] open-source

library. The model trained in validation hold experiment

Fig. 6. Overlay of 7x7 class activation map on an EIS
curve measured at SOC 40% on battery 06. The brighter
colors indicate a relative more significant contribution of
feature (image pixels) in the area to the final classification.

achieves 0.68 accuracy and 0.87 top2-accuracy on new bat-
tery test and 0.90 accuracy and 0.100 top2-accuracy on

new measure test. The ensemble model trained in leave
one battery out experiment achieves 80% overall classi-

fication accuracy and 95% top2-accuracy on new battery
SOC estimation test and 90% accuracy and 100% top2-

accuracy on new measure test.

IV. CONCLUSIONS

Experimental results confirm that the relationship be-

tween EIS and SOC can be leveraged to estimate the SOC

of a battery from impedance measurements. Although

the analytical relationship is unknown, deep neural net-

works can be used as an approximated model to estimate

SOC. We develop a SOC estimator based on CNN and a

training pipeline that allows for fast system calibration on

the specific battery to compensate for the variation in EIS

present in each specific battery and the battery aging over

time. The proposed system achieves 90% and 100% top-2-

accuracy accuracy in SOC estimation for a battery included

in the training. On an unknown battery the system scores a

62% accuracy and 80% top-2-accuracy.
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