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Abstract – There are many situations in practice when 
the value of the rotational speed of an engine is needed 
to be known and a direct instrument for measuring it 
is not available or, if present, it is decalibrated. One 
can use instead a non-contact method for estimating 
the speed. The paper presents such a non-contact 
method for estimating the rotational speed of a heat 
engine based on audio recordings and machine 
learning algorithms. The method principle, 
experimental validation and a discussion upon the 
optimal parameters and factors that lead to the best 
performances are presented.

I. INTRODUCTION

In the automotive industry, measuring engine speed is 

essential both in operation and in troubleshooting and 

maintenance process. There are numerous methods of 

measuring engine speed in the automotive industry, 

presented both as a principle in the literature and as 

functional commercially available devices mounted on 

cars. The basic principles on which analog and digital 

tachometers operates, based on either electrical, 

magnetic, or optical methods, are well known [1-4]. 

These devices require coupling to the motor shaft and are 

most often mounted into the car gearbox. There are also 

non-contact solutions for measuring the engine speed, 

based on the analysis of engine vibration [5], on the 

electrical noise produced by the spark plug during 

ignition over the battery voltage [6], or on various digital 

image processing methods applied to video recordings 

over rotating elements [7]. An interesting method of 

analyzing the automotive engine sound is depicted in [8]. 

It uses a deterministic - stochastic signal decomposition 

approach through which the quality of the engine sound 

may be assessed and then synthesized according to the 

customer needs and claims. In this approach, the 

deterministic component of the audio signal is extracted 

using the synchronous discrete Fourier transform, 

whereas the stochastic one is modeled using a new 

suboptimal multipulse excitation approach. A similar 

approach is discussed in [9], in which sound and 

vibration measurements are utilized to estimate journal 

bearing performances of electric motors. In this research, 

1/3 octave band analysis techniques are employed for 

training three unsupervised types of ML algorithms, 

namely Random Forest Classifier, k-Nearest Neighbours 

Classifier and Gradient Boosting Regressor. It was 

proved in the paper that the best results are obtained 

using sound and z acceleration sets of data for the KNN 

algorithm, thus obtaining an accuracy of 98 %.

The present paper aims to describe a new method of 

measuring / classifying the speed values of the heat 

engine of a car based on processing the sound waveform 

recordings of the engine using machine learning (ML) 

algorithms. The method is presented only as a principle in

order to provide a very simple solution for estimating 

engine speed, being useful if the vehicle's tachometer is 

defective or decalibrated, but it can also be successfully 

used to determine the speed of any moving element in 

rotation which produces a characteristic sound whose 

features are related to speed.

II. METHOD PRESENTATION

In this section, the main steps of the method along with 

the operations to be performed in each step are presented. 

Fig. 1 shows schematically the steps to be accomplished 

for practically implementing the method. 

Fig. 1. Main steps of the method dataflow
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experiment essentially depends on this stage. The 

recording of the sound produced by the engine is carried 

out with the help of a mobile phone that is equipped with 

a built-in sound acquisition hardware system. Recording 

is done either with the phone's default software or with a 

sound recording application downloaded from specific 

application market. It is important to specify that the 

application be able to record sound continuously, as any 

delay in recording process causes desynchronization 

between the timeline and the sound track.

a) Configure sound acquisition parameters. This 

operation consists of setting the resolution, sample rate, 

number of channels and bitrate in the application chosen

for sound recording. It is advisable that the recording is 

done with a high sampling rate, but not very high because 

it is directly related to delaying the processing time.

b) Raw data acquisition. The sound is recorded at a 

distance of 1 m from the engine in operation, in two 

situations: with the hood open and the hood closed. The 

records are saved in .wav format. There are accomplished 

N1 records with the hood open and N2 records with the 

hood closed, with a mobile phone, for a speed range 

between idle speed (800 rpm) and 3200 rpm when the 

engine speed is increased progressively between these 

two limits and then decreased. Speed recordings in the 

increasing sense are used for building the training dataset 

whereas those corresponding to the decreasing slope are

for building the testing dataset. 

The synchronization of the speed values with the engine 

sound can be done by video recording of the car's 

tachometer with a second phone and processing of the 

two tracks using a common video processing software for 

delimiting the classes (VideoPAD Editor for example). In 

this case, the car’s tachometer is the only measurement 

instrument in this approach, all other results being 

estimations of the measured quantity. A second more 

precise solution achieves synchronization by using a 

specialized device for reading the parameters of the car 

such as an OBDII, manufactured by ELM Electronics, 

which is plugged into the dedicated Data Link Connector 

of the car. Using this solution, the speed values are 

recorded at a sample rate of 10 samples / s, but precise 

synchronization of the OBDII start-up time and sound 

recording are still required. It must be noted here that the 

accuracy of angular speed measurement using an OBDII 

device is less than 2 %, as reported by the manufacturer, 

whereas the tachometer precision is not better than 5 %. 

However, this solution was chosen for simplicity as it 

does not require specialized devices.

c) Class delimitation and labeling. The delimitation of 

classes is achieved with the help of video graphics 

processing software, according to which the moments of 

time in which the tachometer indicates a certain speed is

demarcated. It should be noted here that a very precise 

delimitation of the speed values is not necessarily to be 

done, the indications of the car's tachometer being 

sufficient with an accuracy up to 5%. The .wav files 

corresponding to the classes are thus converted to 

spreadsheet data files containing the sample values.

d) Mean normalization. In order to make the amplitudes 

of all the records comparable, the data strings are

normalized according to the formula:

=                            (1)

where sin is the i-th normalized sample, µ is the mean of 

the class module and Smax and Smin are the maximum and 

minimum values of the record.

B. Computing features
The second step is to prepare the feature files for both 

training and testing. The feature file is built for each of 

the N1 + N2 waveform recordings, after which they are 

concatenated to form a compound feature dataset. It 

should be noted from the beginning that, due to numerous 

mechanical components of the motor the emitted sound 

depends on, such a sound waveform is very complex, 

containing a lot of time varying frequencies, as well as 

multiple influence factors that cannot be neglected. In the 

second section, a sample of such as waveform will be 

depicted and discussed. 

Within a recording represented by a .wav file, for each 

feature class, a comma separated value (csv) file is built. 

This file will be used for training / testing the ML 

algorithm. The construction of the features is based on a 

series of statistical parameters calculated on batches that 

are cut from the spectrum of the signal corresponding to 

each class. Fig.2 schematically describes the process of 

feature computing algorithm.

Fig.2. Schematic of feature computing algorithm
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The file representing the "m" labeled class is divided 

into Nm packets of length LP, which is one of the feature 

computing parameters and which is common to all 

classes. For each packet the signal spectrum is calculated 

by applying a windowed Fast Fourier Transform (FFT).

The Flat-Top window was chosen for this due to its 

property to provide the best amplitude accuracy. A

frequency band comprised between fmin and fmax, BWk, is 

cut from the spectrum. Each BWk is divided into a 

number of batches, Nbk of equal lengths, Lbk. Hence, each 

batch Bk represents a sub-band within BWk so that

=                               (2)

Next, the statistical parameters mean (µ), standard 

deviation ( ) and variance ( ) are calculated for each 

batch, obtaining the k-th feature line in the “m” class

feature file. The files thus obtained for each record are 

concatenated to form the general feature file. The final 

operation in the feature computing stage consists in 

splitting the general feature file in training and testing 

datasets (usually the training is assigned to increasing 

speed whereas the second part of the feature file, 

corresponding to decreasing speed, is assigned for testing 

the speed estimator). From the training set, 20% is 

assigned to cross validation operation devoted to

optimizing the hyperparameters of the training ML 

algorithm.

C. Model training
To obtain the ML model, three well-known algorithms 

were included for analysis, namely Support Vector 

Machine (SVM), Neural Network (NN) and Logistic 

Regression (LR). A comparison was made between the 

performances offered by them in various conditions and 

different values of their training parameters.

Table 1 lists the variables that accompany the training

model operation. The hyperparameters specific to every 

algorithm are optimized using the grid exhaustive search 
algorithm, in which a series of manually set values for 

hyperparameters are scanned successively, and their 

performances are compared to minimize the training 

accuracy using cross validation method. The optimization 

algorithm uses for cross validation 20% of each training 

class.

Table 1. Feature parameters and hyperparameters for ML 
algorithms

Algorithm Feature 
parameters

Hyperparameters

SVM

Building class: # 

of classes, fmin,

fmax, BW, LP, Nb

Statistical: µ, ,

SMT type, Kernel type, c, 

0.

NN # of hidden neurons, 

hidden layer type, output 

layer type, cost function 

type.

LR tolerance, max iteration.

After optimizing the hyperparameters and training the 

algorithm, the model is obtained in .json format, for 

which the metrics are determined and the performance is 

evaluated on the testing dataset.

D. Model testing
The model testing is completed in two ways:

a) On the test datasets built together with the training 

datasets from the same .wav records, defined as 

supervised testing records with known class labels. In this 

case, the model deployment for testing is accomplished 

for every feature dataset built using initially acquired 

waveforms. For each dataset, the accuracy is calculated 

after which the average is assessed. A discussion is, 

however, performed according to special conditions such 

as open or closed hood.

b) Live testing with datasets acquired and processed on-

line and in real time. For testing in live conditions, an

appropriate software was built in LabVIEW which 

performs in real time the following chain of tasks: sound 

acquisition - building feature set - model deployment -

class estimation - accuracy computing. This test is 

unsupervised as the class labels are not known a priori,

but only the result indication.

III. EXPERIMENTAL VALIDATION

To experimentally validate the method, a number of 10

recordings in .wav files were acquired with a mobile 

phone placed 1 meter from the engine running, 5 with the 

hood open and other 5 with the hood closed. The 

recordings have been accomplished with a Samsung 

Galaxy A52 smart phone using the built-in sound 

recording application on the engine of an Opel Crossland 

car, 3 cylinders, 1.2 dm
3 volume, gasoline. The sound 

acquisition parameters were: sample rate 44100 sample / 

second, 2 channels, bit rate 256 kbit / s, resolution 16 

bits. The recordings were made during approx. 8 minutes, 

4 minutes in increasing speed between 800 and 3200 rpm, 

and 4 minutes when the speed decreases. The speed 

increase and decrease were approximately linear. 

Each .wav file was divided into 12 classes labeled 1, 2, 

3,…, 12, for which the range 800 - 3200 rpm was divided 

into 12 segments, corresponding to a range of 200 rpm

each segment.

Feature building, model training and model testing were 

carried out using the LabVIEW program and the 

Analytics and Machine Learning toolkit that is endowed 

with specific ML libraries and functions. In Fig. 3 is

given a fragment of a sound recording containing raw 

data extracted from a .wav file within the range of a 

packet of 30,000 samples (0.68 s) and for the 3rd class, 

viz. for the interval of speeds from 1200 rpm to 1400 

rpm. In Fig.4, the corresponding spectrum of the signal 

calculated for a bandwidth BW = 5000 Hz along with a 

detail up to 500 Hz is given, which represents the pattern 

for this packet. One may notice the richness of the 
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spectral components, even in the field of high 

frequencies. 

Unfortunately, in the low frequency range, the spectrum 

is limited to about 30 Hz by the phone's microphone. This 

may be a serious source of errors as it makes the task of 

determining features more difficult because the range of 

fundamental frequencies for this kind of recorded sound 

is located in this band. Finally, the pattern is segmented 

in Nb batchs using rectangular windows.

Fig. 3. A fragment of raw data for the 3rd class

Fig.4. Example of a signal spectrum

It is known that in any ML application, setting the 

model features is the most important and difficult task

because the success of the algorithm essentially depends 

on the ability to perform this action. It is, nevertheless,

practically impossible to establish from the very 

beginning a set of features that provide maximum or 

optimal performance. The present paper aims to carry out 

a study upon the model performance when varying a 

series of parameters that define the training features.

These parameters are: ML algorithm type, LP, Nb, fmax
and the statistical parameters, and employed, 

considering the hyperparameters for each algorithm 

already optimized using the grid exhaustive search 

method. The minimum frequency fmin was considered less 

than 30 Hz, having no influence over the bandwidth 

length, The metrics chosen for assessing the algorithm 

goodness is the accuracy, defined as:

=
+

                        (3)

where TN and TP represent the true negative and the true 

positive results respectively, and N is the total number of 

trials for a certain class. We tested also other metrics for 

assessing the performances of the algorithm such as 

precision, recall and F1-score, but very similar results 

were obtained and we retained for our reports only the 

accuracy, which is the most comprehensive and relevant. 

The frequency resolution df for a packet k of length LPk is 

calculated as:

=
 

                (4)

IV. RESULTS AND DISCUSSION

There were performed a large number of trials (training 

and test) in order to draw a conclusion regarding the best 

set of feature parameters to be engaged for obtaining the 

best results. 

Table 2 presents some of these trials underlying the 

most significant lines that may lead to a relevant 

conclusion. The effectiveness of the algorithm is assessed 

by the calculated accuracy as a metric score, but also a 

discussion is undergone regarding the computation time. 

An exact computation time has not been determined for a 

dataset, but estimation can be made according to the 

quantity of features to be calculated. By analyzing the 

lines of the tables, we can conclude the following:

- From lines 1, 4 and 7 one may observe that the 

increase of LP improves the resolution in frequency and 

therefore the accuracy in both training and testing stages,

because the features are more differentiated by their

individual value of the spectral components, than by their 

statistical behavior in the range of a batch. Nevertheless, 

too high an LP (lines 19 and 20), i.e. too low a resolution, 

mainly under 1 Hz, decreases the overall performance 

leading to overfitting, that is obtaining excellent accuracy 

in the training stage while testing with new data provides 

poor results. 

- SVM and NN algorithms provide comparable 

results, but the benefits brought by LR are unsatisfactory. 

- Comparing the lines 7 and 9 or 8 and 10, it is 

observed that increasing the batch number, i.e. narrowing

the bandwidth of a batch on which the statistical 

parameters are calculated improves the selectivity of the 

features. The drawback is a bigger computing effort and 

hence a delay in obtaining the result.

- The best results are obtained by using the statistical

parameters µ and . In this case, adding the variance

does not significantly change the accuracy, but also

increases the features computing time.

- By analyzing the lines 15 to 19, it is found that 

widening the frequency range (increasing fmax) leads to 

enlarging the dispersion of the features with maximum 

performance around 300 Hz, after which the accuracy

drastically decrease. This also reduces the accuracy of 

new recordings that are not part of the test dataset.
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Table 2. The most significant trials (training + testing) containing the significant parameters and their results

#
trial

Algorithm 
type

Lp [samples | s] df 
[Hz]

fmax
[Hz]

Nb Lb [Hz] Statistical 
params

Training 
accuracy 

Testing 
Accuracy 

1. SVM 10000 | 0.22 4.4 200 5 39.7 µ 0.88 0.58

2. NN 10000 | 0.22 4.4 200 5 39.7 µ 0.79 0.63

3. LR 10000 | 0.22 4.4 200 5 39.7 µ 0.65 0.55

4. SVM 30000 | 0.68 1.4 200 5 39.7 µ 0.90 0.64

5. NN 30000 | 0.68 1.4 200 5 39.7 µ 0.86 0.71

6. LR 30000 | 0.68 1.4 200 5 39.7 µ 0.7 0.54

7. SVM 50000 | 1.13 0.9 200 5 39.7 µ 0.93 0.71

8. NN 50000 | 1.13 0.9 200 5 39.7 µ 0.89 0.75

9. SVM 50000 | 1.13 0.9 200 10 20.2 µ 0.94 0.75

10. NN 50000 | 1.13 0.9 200 10 20.2 µ 0.89 0.78

11. NN 50000 | 1.13 0.9 200 10 20.2 0.99 0.87

12. NN 50000 | 1.13 0.9 200 10 20.2 0.99 0.87

13. NN 50000 | 1.13 0.9 200 10 20.2 0.99 0.88

14. NN 50000 | 1.13 0.9 200 30 7 1 0.90

15. NN 50000 | 1.13 0.9 200 40 5.3 1 0.91

16. NN 50000 | 1.13 0.9 300 40 5.3 1 0.93

17. SVM 50000 | 1.13 0.9 300 40 7.9 1 0.95
18. SVM 50000 | 1.13 0.9 400 40 9.7 1 0.89

19. SVM 60000 | 1.36 0.7 300 40 7.9 1 0.86

20. SVM 60000 | 1.36 0.7 300 30 10.3 0.97 0.83

- If reduced response times, that is sampling on

periods below 0.2 s are desired, this can be done by 

reducing LP, but at the cost of significantly diminishing 

the accuracy, even below 80%. This can be 

counterbalanced by reducing Nb and possibly adding a 

new statistical parameter (in this case may be efficient).

- From the example presented in Fig.5, it is observed 

that the reduction of score is mainly present during the

transition zones between classes. It is therefore necessary 

to make this transition area as smooth as possible.

Fig.5. A sequence of testing results where inaccuracies at 
transition regions may be remarked

- Better results are obtained for longer records for 

each class, so widening the training records (minimum 30 

seconds).

- There is an optimum of the feature parameters 

represented by the thicker line in the table (line 17) for 

which one obtained the best score.

As a general conclusion drawn over the above 

observations, a trade-off between the sampling period, the 

resources involved, the accuracy and the time computing 

must be done in order to optimize the feature parameters 

and to obtain a satisfactory result for further deploying 

the algorithm in practice.

V. CONCLUSIONS

In the paper, a method based on machine learning 

algorithms devoted to estimate de rotational speed of a 

heat engine based on recordings of the sound emitted by 

the engine was presented. The method was illustrated 

only as a working principle and has been implemented 

only on a portable computer for now, being planned to be 

deployed on smartphones to increase its usability and 

portability. The main benefits of the method are: 

- it is simple, cheap and easy to implement as an 

application on a device equipped with a sound acquisition 

system (tablet, mobile phone, laptop, etc.);

- its performance expressed as accuracy in testing 

stage is satisfactory if a sufficiently large number of 

classes is considered, with the reverse that important

resources for computing are needed;

- it can be used as a method of measuring speed for 

other rotating or cyclic objects, such as electric motors, 
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drive mechanisms, etc.;

The method has also some downsides:

- because of the large number of mechanical elements 

contributing to a specific sound of an engine, in the 

present study,  training and deploying were performed on 

a single type of car. Training on an engine from one type 

of car and deploying on another car did not give 

satisfactory results using the presented feature 

parameters;

- the method is limited by the computing resources of 

the device used.

We plan for the future to implement the method as 

application for smartphones able to estimate speeds for 

any type of engine, even for electric motors. For this, new 

types of features are to be utilized using Short Time 

Fourier Transform and Wavelet Transform. The 

development of the method is also being considered for 

detecting malfunctions of an engine.
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