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Abstract – In this paper, roundoff errors in Artificial
Neural Networks (ANNs) are analyzed on a model for
Solid-State Power Amplifiers (SSPAs). Calculations are
carried out on 32-bit Floating-Point (FP32) arithmetics,
and results are verified using 64-bit floating-point rep-
resentation as reference. Besides the modeling of quan-
tization noise at every operation, error propagation is
also taken into consideration when calculating the cu-
mulative Quantization Noise Power (QNP) after each
stage and at the final output. By this means, the pre-
dictability of roundoff errors in the ANN is demon-
strated. Consequently, it can be determined whether
the FP32 arithmetic is sufficient instead of applying the
computationally more demanding 64-bit calculations.
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I. INTRODUCTION

Over the last decades, the evolution of deep learning al-

gorithms has been noticeable, as they have been used in

various applications, starting with video processing, voice

enhancement, and generally in digital signal processing

[1]. Recently, improving the performance of Artificial

Neural Networks (ANNs) has been an essential scope of

research. The main parameters to investigate are size,

speed, performance, and power consumption of the ANN

architectures as they have been used extensively in cur-

rent applications [2]. Using a finite number of bits to

represent the data and the coefficients is called quantiza-

tion. The quantization of ANNs has been an important

scope of study recently as this technique is widely used

in large models and systems such as artificial intelligence

chips. The quantization process of weights, biases, and op-

erations in ANNs significantly reduces the storage size of

the system. Furthermore, the reduction in the number of

bits can also substantially accelerate the ANNs [1]. In this

paper, a nonlinear model of Solid-State Power Amplifiers

(SSPAs) is used as an example for the proposed analysis to

predict its behavior using ANNs. SSPAs have been used

in a variety of applications recently, especially in mobile

communication systems, due to their small size and low

phase distortion [3].

There have been similar studies in the literature that are

summarized in the following part. Nichols et al. [4] stud-

ied the feasibility of using the 32-bit Floating-Point (FP32)

format for ANNs on Field Programmable Gate Arrays (FP-

GAs), and they compared this representation with the 16-

bit fixed-point representation. They showed that the FP32

arithmetic makes the system thirteen times bigger in size

than the 16-bit fixed-point format; hence it would be area

consuming for the hardware implementations. Lian et al.

[5] presented an implementation of a Convolutional neural

network (CNN) accelerator on an FPGA device with Block

Floating-Point (BFP) arithmetic. They mixed the 16-bit

Floating-Point (FP16) and the FP32 formats in their archi-

tecture. They showed that the BFP can efficiently reduce

the size, signal traffic, and hence energy as this method

provided all these merits with only 0.12% accuracy loss.

Peric et al. [6] have made a comparison between 32-bit

fixed-point and FP32 representations in terms of quantiza-

tion noise and signal to noise ratio. They concluded that

the accuracy of the floating-point quantizer is the same as

that of the fixed-point quantizer.

In this study, our contribution is to investigate the ef-

fect of FP32 quantization on ANNs theoretically. This

means that we do not compare experimental results, but

the QNP is predicted in advance without launching the net-

work structure. For the investigation, an example of an

SSPA model is used in this paper. The analysis includes

a comparison between theoretical and simulated results.

Simulations were carried out using MATLAB 2021b. The

remainder of this paper is organized as follows. Funda-

mental concepts about the investigated structures are pre-

sented in Section II, including ANNs and SSPAs. Section

III gives a background on the IEEE floating-point standard

and the quantization noise. Simulation results and the dis-

cussion are presented in Section IV, while Section V con-

cludes the paper.

II. INVESTIGATED STRUCTURES

This section presents a theoretical overview of the

ANNs and the SSPAs.
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A. Artificial Neural Networks
ANNs have been used for many applications recently. It

is important to implement them with a small size, complex-

ity, and with low energy while maintaining acceptable per-

formance. ANNs are effective tools for tackling complex

nonlinear problems and identifying universal input-output

mappings. An ANN consists of inputs, outputs, and hid-

den layers. Each link between two neurons, or between an

input and a neuron, has its own weight. Furthermore, each

neuron has its own bias. Weights are considered through

multiplication, while biases are added to the sum of input-

weight products [7]. An activation function is applied to

the summation result in each neuron. Nonlinear activation

functions are essential in artificial neural networks because

they allow them to learn complex mappings between their

inputs and outputs [8].

The accuracy of the ANN is determined by the weights

and biases established throughout the training phase. Fig.

1 depicts a simplified ANN architecture [7].

3

1

2

4

5

Fig. 1. A basic ANN architecture [7].

B. Solid-State Power Amplifier Model
High Power Amplifiers (HPAs) are utilized in mobile

communications and base stations to transmit suitable

power levels. The performance of Orthogonal Frequency-

Division Multiplexing (OFDM) systems is greatly influ-

enced by HPA nonlinearities [9]. Traveling-Wave Tube

Amplifiers (TWTAs) and SSPAs are the two most prevalent

types of HPAs. In this study, SSPA is preferred since the

phase distortion of typical SSPAs is significantly smaller

than that of TWTAs. The SSPA model can be described as

follows [9]:

FA(x) =
x[

1 + (x/Ao)
2p
]−2p , (1)

where FA(x) is the output of the SSPA, x is the SSPA in-

put, p is the smoothness from the linear region to the sat-

uration region and Ao is the output maximum saturation

level.

III. BACKGROUND OF THE ERROR ANALYSIS

A basic overview of floating-point number representa-

tion systems, and modeling of quantization noise in these

systems will be presented in this section.

A. IEEE floating-point Standard
Computer manufacturers utilized incompatible floating-

point representations for a long time. The output of one

computer could not be directly translated by another. The

IEEE 754 Floating-Point Standard, which defines floating-

point numbers, was created in 1985 by the Institute of

Electrical and Electronics Engineers (IEEE). This is the

floating-point format that is described in this section be-

cause it is now nearly universally used [10].

The IEEE 754 Standard defines the FP32 representation

[11]. It uses one bit for the sign s, 8 bits for the exponent e,

and 23 bits for the mantissa m. The first bit of the mantissa

(to the left of the binary point) is always 1 in floating-point

and hence does not need to be stored. It’s referred to as the

implied leading one. Round down, round up, round toward

zero, and round to nearest are the four rounding modes.

Round to nearest is the default rounding mode [10].

This format is also called full-precision, contrary to the

FP16 format, which is referred to as half-precision. The

FP32 representation is also known as single precision com-

pared to the double precision, which is the 64-bit Floating-

Point (FP64) format. The bitmap of the FP32 representa-

tion is illustrated in Fig. 2.

Sign Exponent Mantissa

32 bit

1 bit 8 bit 23 bit

Fig. 2. Bitmap of the FP32 representation.

Based on the binary number system, the FP32 format

represents a real number x as follows [6]:

x = (−1)s · 2e ·
(
1 +

m

223

)
. (2)

In this case, the exponent e and the mantissa m can have

values in the following ranges:

e ∈ {−128,−127, . . . ,−1, 0, 1, . . . , 126, 127}, (3)

m ∈ {0, . . . , 223 − 1}. (4)

Similar to the fixed-point 32-bit representation, the sin-

gle precision, which is the FP32 representation gives dis-

crete values. However, the difference is that the FP32

representation has variable step size. A smaller step size

makes the FP32 representation very efficient to represent

small values, while a large step size makes the presentable

range wide [6].
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B. Floating-Point Quantization Noise
Scientists mostly overlook roundoff errors in computa-

tions because of the success of the IEEE double precision

standard. We usually expect that a simple personal com-

puter’s precision is infinite. However, roundoff errors can

readily ruin a calculation’s outcome, even if it appears fair.

As a result, even with IEEE double precision representa-

tion, it is worthwhile to investigate them.

Using floating-point numbers to represent physical

quantities enables a vast dynamic range to be covered with

a small number of digits. Roundoff errors are usually pro-

portional to the amplitude of the depicted quantity when

using this type of representation. In most applications,

floating-point representation is better than fixed-point rep-

resentation from a point of numerical accuracy. The adop-

tion of floating-point numbers is speeding up as the speed

of floating-point calculations improves and the cost of im-

plementation decreases. As a result, having a modeling

approach for the propagation of Quantization Noise Power

(QNP) is needed to simulate or predict the accuracy of the

applied implementations.

The difference between the quantizer output (x′) and in-

put (x) is the roundoff error of the floating-point quantizer

vFL, which is represented by the following equation [12]:

vFL = x′ − x. (5)

An approximation has been derived in [12] to calculate

the QNP, and it is demonstrated by the following equation:

E{v2FL} = 0.18 · 2−2p · E{x2}, (6)

where E{x2} is the expected value of the quantizer input

power, and p is the number of mantissa bits plus the hid-

den bit, which in total is 24 bits for FP32 format. When

the mantissa is 16 bits or more, the QNP is given by (6);

otherwise, the following theoretical bounds present it [12]:

1

12
· 2−2p · E{x2} ≤ E{v2FL} ≤ 1

3
· 2−2p · E{x2} (7)

IV. SIMULATION RESULTS AND DISCUSSION

A small ANN was trained and built in simulation that

has one input, one output, and one hidden layer with three

neurons. Hyperbolic Tangent Sigmoid (TanSig) activation

function has been used in the proposed analysis. The SSPA

model of (1) has been built using an ANN for prediction

application. The practical range and values for the SSPA

considered in this study are [0,1] for x, 0.8 for p, and 1 for

Ao.

An FP32 quantizer was used for each operation and for

the input of the ANN. The double precision floating-point

format was assumed to be the reference to our calculations

and simulations. The quantization of the weights and the

Table 1. Propagation of error formulas.

Function Variance

F = A+ constant σ2
F = σ2

A

F = A · constant σ2
F = constant2 · σ2

A

F = eA σ2
F = F 2 · σ2

A

F = 1
A σ2

F = F 2 · (σ2
A/A

2)

Table 2. QNP after each quantizer taking the error propa-
gated from previous operations into consideration.

No. Designator Theoretical Simulation

1 Input 2.13E-16 1.69E-16

2 m1 5.21E-16 4.72E-16

3 m2 2.42E-16 2.21E-16

4 m3 3.84E-15 3.54E-15

5 s1 6.00E-16 6.41E-16

6 s2 9.03E-16 1.20E-15

7 s3 1.22E-14 1.71E-14

8 Ag1 2.40E-15 2.56E-15

9 Ag2 3.61e-15 4.82E-15

10 Ag3 4.87e-14 6.85E-14

11 Ae1 1.13E-14 2.30E-14

12 Ae2 1.14E-16 8.82E-17

13 Ae3 2.03E-06 5.89E-06

14 As1 1.64E-14 2.98E-14

15 As2 9.63E-16 1.33E-15

16 As3 2.05E-06 5.89E-06

17 Ar1 5.61E-16 4.39E-16

18 Ar2 1.04E-15 1.06E-15

19 Ar3 1.36E-18 5.77E-19

20 Agg1 2.24E-15 1.76E-15

21 Agg2 4.16E-15 4.25E-15

22 Agg3 5.42E-18 2.31E-18

23 Af1 2.31E-15 1.82E-15

24 Af2 4.52E-15 4.25E-15

25 Af3 6.37E-16 2.97E-16

26 mm1 5.83E-17 4.64E-17

27 mm2 3.11E-14 2.97E-14

28 mm3 9.31E-16 5.14E-16

29 ss 3.27E-14 3.12E-14

30 y 3.29E-14 3.12E-14

biases is not included in this study as all of them have been

set to FP32 representation. By this means, we can obtain

the actual roundoff error during each operation. Coeffi-

cient quantization is a subject of further investigation.
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Fig. 3. Block diagram of the SSPA ANN model including the quantizers.

For statistical calculations, 10000 samples were injected

into the ANN that spread in the range [0,1]. Fig. 3 shows

the ANN architecture including the quantizers denoted by

the letter Q that are placed after each operation.

TanSig activation function have been used for each neu-

ron in the ANN. The QNP was calculated for each quan-

tizer, using (6), and added to the propagated QNP from

previous operations. The variances, which apply for the

QNP, of the error transformation through a function are

presented in Table 1. Table 2 shows the cumulative QNP

after each operation.

The QNP was also calculated in the simulation by find-

ing the difference between the input and the output of each

quantizer. The QNP propagates through stages, and it can

increase or decrease according to the operation. If the op-

eration is, for example, a division or a reciprocal, the QNP

will decrease while it increases if the operation is a sum-

mation or a multiplication operation. The same designator

abbreviations were used in Table 2 and in Fig. 3.

For the inserted inputs, the QNP of each quantizer has

been investigated considering the bounds of (7). The in-

vestigation showed that every QNP value was in the the-

oretically given range. However, due to the limits of this

paper, these results are not presented in detail. The quan-

tizer stages Ag and Agg have zero QNP because the input

values are already quantized and a multiplication by two

of a quantized number introduces no extra quantization er-

ror by this operation quantizer. But the increase that can

be seen from Table 2 is caused by a multiplication of the

QNP from previous stages by a constant according to the

second function in Table 1.

The total QNP values of the model have been calculated

theoretically and in simulation. They are 3.29E-14 and

3.12E-14, respectively. The theoretical QNP at the output

of the ANN using the FP64 format is 1.14E-31. This small

value indicates that the FP64 format is a valid choice to be

considered as a reference. Since the theoretical and actual

values are really close to each other, the acquired results

show the effectiveness of the presented method. Further-

more, it can be seen that these errors are sufficiently small

so that the FP32 arithmetics can be used instead of an FP64

arithmetics. By this means, the cost and size of implemen-

tation can be decreased significantly, as it was highlighted

in Section I.

V. CONCLUSION

Analysis of the 32-bit Floating-Point (FP32) quantiza-

tion in an Artificial Neural Network (ANN) has been pre-

sented in this study taking the double precision floating-

point representation as a reference. The ANN have been

trained to model a Solid-State Power Amplifier (SSPA) as

a practical example. The Quantization Noise Power (QNP)

after each operation was calculated theoretically and in

simulation.

It can also be concluded that when the QNP propagates

through the different stages of the ANN, it can increase or

decrease. We encountered two cases when it increased: the

exponential and the multiplication operations. It can also

decrease when multiplying by a number smaller than one

or when it is a reciprocal operation.

Results show that the presented method is effective in

giving an estimation of the error that would be generated

when using the FP32 quantization. The total error cal-

culated for the presented example is small compared to
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the data values. Therefore, using half the number of bits,

the FP32 representation, for such small ANNs is a valid

choice.
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