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Abstract – The linearization of active electronic com-
ponents such as the PA or the ADC, is a vast subject.
Many issues come into play, including behavioral mod-
eling with the selection of a relevant model in terms
of accuracy and complexity, the identification of this
model, and the correction of defects by compensation.
In this article, we propose a baseband model of non-
linearity defects observed at the digitization output and
after IQ demodulation, with a focus on order 3 inter-
modulation. We then introduce a refinement of this
model by adding a dependence on the variation of the
instantaneous frequency of the signal. We describe a
method suitable for calibration of the model, by identi-
fication on a two-tone signal. We finally present a mea-
surement bench adapted to the calibration of the coef-
ficients of the model, followed by some results of lin-
earization.

I. INTRODUCTION

This paper deals with the baseband modeling of the

distortion at the output of a high speed (2 GHz) and high

resolution (14 bits) commercially available ADC. This

ADC features IQ demodulation, filtering and decima-

tion, making it possible to select and reduce the useful

frequency band of the signal thus digitized. We will use

these capabilities later, and we are therefore interested

in modeling distortion defects on complex signals, at the

digitization output and downstream processing stages of

the ADC.

The objective is thus to propose a model on a complex

analytical signal applicable at the output of the digitization

chain (ADC, digital IQ amplitude/phase demodulation,

and decimation) suitable for calibration and linearization.

Although the targeted application is narrow band here, we

propose to take into account the frequency dependence,

analogous to a memory effect, with a view to versatility.

Finally, these models aim to intervene at the end of the

digital chain for practical reasons: limitation in flow due to

decimation, and therefore in energy consumption, and ease

of implementation. The targeted application of this work

is indeed an embedded application. The models envisaged

must then present a limited complexity, facilitating their

identification and the implementation of the linearization.

In this paper, we propose an extension of a baseband

polynomial model by involving the derivative of the sam-

pled analytical signal, and thus by adding an instantaneous

frequency dependence to our model. This writing thus

makes it possible to model to a certain extent the variation

of the non-linearity with the frequency. This method has

been patented in 2015 [1].

This paper is organized as follows. We will first develop

the distortion model on an analytical signal, and the instan-

taneous frequency dependence. Afterwards, the identifica-

tion of these models will be studied, from spectral obser-

vations of the distortion of two-tone signals. We will then

see a measurement bench allowing the calibration of our

ADC, and finally results of identification and linearization

by compensation.

II. MODELING

Any active analog or mixed system generates distortion

spurs on its output. This is called a non-linear system. The

simplest model allowing to illustrate this phenomenon is

the polynomial model, or in series of powers, describing

a non-linear distortion. A polynomial model links the real

input x(t) of a nonlinear system to its output y(t) by the

following relation:

y(t) =
N∑

n=0

anx
n(t) ≈ x(t)+D [x(t)] = x(t)+

N∑
n=2

anx
n(t)

(1)

with N the order of non-linearity of the system, and the

an the coefficients of the model. The 0th order coefficient

is an offset (a0 ≈ 0), and the 1st order coefficient is the lin-

ear gain of the system (a1 ≈ 1). The nonlinear distortion is

then contained in the higher order terms. This separation in

the distorted signal between the input signal and a function

(here D) of distortion depending on the input signal allows
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a compensation of the defects by subtracting this part of

distortion from the signal at the output of the system to be

linearized.

A. Baseband distortion modeling
We find an expression for distortion defects on an

analytical signal in [2, 3, 4]. This model is described

in these papers as coming from the polynomial ex-

pansion of the complex envelope of an RF signal:

xRF (t) = 2� [
x(t)ejω0t

]
, where ω0 is the pulse of the RF

carrier frequency of the signal (using the notation of [2]).

Our distortion model is based on the Order 3 Volterra

Base Band Series model, with no memory effect [4]:

D̃(3)(x) = xα |x|2 (2)

This model can be extended to the order 2N + 1 as fol-

lows:

D̃(2N+1)(x) = x
N∑

k=1

αk|x|2k (3)

The model presented so far does not present a frequency

dependence, i.e. it does not allow to model a memory ef-

fect, being a variation of the non-linear distortion as a func-

tion of frequency. This point will be dealt with in the next

subsection.

B. Adding and instataneous frequency dependence
We here propose to add a dependence of the distortions

on the instantaneous frequency of the signal. This instanta-

neous frequency will be noted fi. It is expressed as follows

for a sinusoidal signal of natural frequency f0:

x(t) = aejψ(t) with ψ(t) = 2πf0t+ φ (4)

fi(t) =
1

2π

∂ψ(t)

∂t
=

1

2π

∂

∂t
(2πf0t+ φ) = f0 (5)

The instantaneous frequency of a sinusoidal signal

therefore corresponds to its natural frequency, the instan-

taneous frequency of a signal made up of two tones of the

same level, to the average of the frequencies of the two

tones.

We have,

x′

x
=

∂x
∂t

x
= j

a2πfej(2πf0t+φ)

aej(2πf0t+φ)
= j2πf0

Thus :

fi(t) =
1

2π
�
[
x′

x

]
=

1

2π

� [x′x∗]
|x|2 (6)

We therefore propose the following refinement to the 3rd

order distortion model:

D̃
(3)
i (x) = x (α+ βfi) |x|2 (7)

i.e.

D̃
(3)
i (x) = x

[
α|x|2 + 1

2π
β� (x′x∗)

]
(8)

C. Synoptic view in blocks of the model
This model can be represented by a block diagram view

(see Fig. 1). The differentiator filter is called hD and its

delay is written τD. It is compensated on the other chan-

nels so that the following operations are synchronous. We

can also see here linearization by compensation, by recon-

structing the distortions from the input signal and then sub-

tracting them from the signal. This point will be discussed

in section v..

III. IDENTIFICATION

The identification of this model is done here from fre-

quency observations of a well-known two-tone CW (Con-

tinuous Wave) signal, i.e. whose frequencies are known.

The frequency identification of this model follows the

work of [5]. This method is suitable for a model calibration

phase.

A. Two-tone reference signal
In this paper, we will focus on the response of a com-

mercially available ADC to the excitation of a two-tone

signal. This signal used for the calibration of the model,

indeed makes it possible to reveal the defects which

interest us here, namely the near-carrier inter-modulation.

A two-tone signal also has several interesting advantages,

an ease in the practical implementation of its genera-

tion, and a good coverage of the phase space allowing the

excitation of the full dynamic range of the ADC [6, 7, 8, 9].

For the calibration of the model, we look at the excita-

tion of the ADC by a two-tone signal of the form:

x(t) = a1e
j2πf1t + a2e

j2πf2t

with a1 and a2 the complex amplitudes of the tones of

frequencies f1 and f2 respectively.

B. Identification of the model
The response of our distortion model to the excitation of

a two-tone signal develops as follows:
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z−τD

�[·]

·∗

β

α

y′[n]
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|y[n]|2

D̃
(3)
i (y[n])
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+

+

−

+
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model

Fig. 1. Synoptic model (order 3 with instantaneous frequency dependence) of reconstruction of distortion and compensa-
tion

y(t) = x(t) + D̃
(3)
i (x(t))

= x(t) + x(t) (α+ βfi) |x(t)|2
= a1e

j2πf1t + a2e
j2πf2t

+ (α+ βfi)
[ (

a31 + 2a22a1
)
ej2πf1t

+
(
a32 + 2a1a2

)
ej2πf2t

+ a21a
∗
2e

j2π(2f1−f2)t

+ a∗1a
2
2e

j2π(2f2−f1)t
]

We then observe the following tones at the output of the

ADC, and on the model (cf. Fig. 2).

A2f1−f2

Af1

A2f2−f1

Af2

2f
1
− f

2 f 1 f 2
2f
2
− f

1

(a) ADC output

(α+ βfi) a
2
1a

∗
2

a1

(α+ βfi) a
∗
1a

2
2

a2

2f
1
− f

2 f 1 f 2

2f
2
− f

1

(b) Model expression

Fig. 2. Model identification
from spectral observation

For the identification of the coefficients α and β,

we will use the results of two measurements, around

the instantaneous frequencies fia and fib . These two

frequencies will be chosen as the extremities of the band

in which the ADC will be modeled.

In our case, the modeling will be performed in a band

B of a few hundreds kHz to a few MHz, around the RF

carrier f0. So we will have fia = f0−B
2 and fib = f0+

B
2 .

We then have to solve the following system. The coef-

ficients are obtained by averaging a redundant observation

of the model:

(α+ βfia) =
1

2

[
A2f1a−f2a

A2
f1a

A∗
f2a

+
A2f2a−f1a

A2
f2a

A∗
f1a

]
= Ra (9)

(α+ βfib) =
1

2

[
A2f1b−f2b

A2
f1b

A∗
f2b

+
A2f2b−f1b

A2
f2b

A∗
f1b

]
= Rb (10)

This system then resolves to:

α =
fiaRb − fibRa

fia − fib
(11)

β =
Ra −Rb

fia − fib
; (12)

During this identification phase, the frequencies of the

two tones being known, the instantaneous frequencies fia
and fib are obtained as follows:

fia =
a21f1a + a22f2a

a21 + a22
(13)

fib =
a21f1b + a22f2b

a21 + a22
(14)

with f1a and f2a the frequencies of the two-tones of the

first measurement, around fia , and f1b and f2b the frequen-

cies of the two-tones of the second measurement, around

of fib .

IV. EXPERIMENTAL SETUP

To validate the theoretical concepts developed in the

previous sections, we build the following experimental

setup (see Fig. 3).
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Fig. 3. Experimental setup synoptic

The two-tone signal used as a reference for the calibra-

tion is generated by two vector signal generators (VSG A

and VSG B). Each sends a CW signal, one at frequency

f1, and the other at frequency f2, and the two-tone

signal is then assembled by a coupler. This signal could

be generated by only one of these instruments, but the

linearity of the input signal would not be sufficient for the

precision required by our measurements. The presence of

attenuation in the assembly, between the VSGs and the

coupler, also makes it possible to improve the linearity

of the reference signal during calibration, by attenuating

twice (due to the goings and comings routes), any bounces

in the assembly.

A band-pass filter is then used to remove out-of-band

noise that can fall back during digitization. Finally, the

ADC studied is a commercially available ADC (AD9689,

14 bit, 2 Gsps), mounted on its acquisition card. The latter

is used to configure the ADC and to recover the points

captured at the PC level. Two clock generators are used,

one for the ADC clock, and the other for the acquisition

card reference clock, for data transfer.

The various measurement and generation instruments

are controlled from MATLAB via USB. Finally, all the in-

struments share the same reference (10 MHz) which allows

them to operate synchronously.

V. LINEARIZATION

We present in this section linearization results of

an ADC using the model, the identification method, and

the measurement bench, described in the previous sections.

To linearize the signal at the output of the ADC from

the proposed model, the distortions are reconstructed from

the distorted signal itself (cf. Fig. 1). Indeed, the signal

is assumed to be weakly non-linear, that is to say that

Fig. 4. Linearization results using model D̃(3)
i with funda-

mentals both at −10 dBFS

Fig. 5. Linearization results using model D̃(3)
i with funda-

mentals both at −6 dBFS

the parasitic spurs are at a sufficiently low level for their

contribution in the reconstruction of the distortions to be
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negligible.

We thus observe some linearization results in Fig. 4 and

5 using our 3rd order model with instantaneous frequency

dependence. In these figures, the amplitudes of the

fundamentals and of the IMD3 products are characterized

by cirle markers on the signal before correction, and by

stars on the signal after correction.

These figures demonstrate the effectiveness of the

compensation with the proposed model. The SFDR

(Spurious Free Dynamic Range) is indeed pushed to the

noise floor (15 to 24 dB amelioration).

To illustrate the relevance and efficiency of the model

depending on the instantaneous frequency, it is necessary

to observe the variation of IMD3 (Order 3 intermodula-

tion) in a frequency band. It is then necessary to calibrate

the compensation model (here simply to order 3) and

note that a simple coefficient α alone cannot translate a

variation in frequency of the IMD3, i.e. a memory effect.

The instantaneous frequency model is then calibrated

on this same band, so as to reproduce this behaviour.

The calibrated coefficients can be seen in Fig. 6 and the

compensation results in Fig. 7.

Fig. 6. Coefficients of order 3 compensation models. A is
the magnitude of the fundamentals (assuming they are at
the same level)

This model is limited here to a linear variation of the

IMD3 as a function of the instantaneous frequency, which

can be associated with a narrow band behaviour of the

ADC. To model more complex behaviours of the IMD3

with regards to frequency, this model would then have to

be extended to a polynomial frequency dependence.

We finally note that although the studied ADC presents

Fig. 7. Linearization results using order 3 compensation
models with and without instantaneous frequency depen-
dence

an IMD3 varying with the instantaneous frequency, this

variation is here too weak in the studied band so that the

gain brought by this new contribution is significant during

the linearization (less than 1 dB of improvement compared

to a simpler model without memory effect). This approach

nevertheless seems promising for systems with more fre-

quency dependence of nonlinearities, or for a study on a

wider band.

VI. CONCLUSION

In this paper, we have presented a baseband distortion

model, with an instantaneous frequency dependence, in

order to model a nonlinear frequency evolving behavior.

A method for identifying this model, based on a frequency

observation of the application of a two-tone signal, is then

presented. We finally built a measurement bench adapted

to the implementation of the identification of this model.

The results of modeling and linearization present

effective mitigation of intermodulation products. The

frequency variation of the distortion is modeled by the

instantaneous frequency (fi) dependence.

When trying to improve the accuracy of the modeling

or identifying models going to higher orders, in order to

acount for higher order intermodulation products, limiting

dynamic range, it quickly appears crucial to get out of

the noise floor. Indeed, the higher the distortion order

observed, the lower the amplitude of the intermodulation

products will be, approaching the noise floor. The solution

is then to observe on longer time intervals, in order to

integrate this measurement noise and to make the noise

floor go down spectrally.
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To go further, the model with a dependence in in-

stantaneous frequency could be studied for signals more

complex than a two-tone signal, not allowing to lift the

correlation of the model on a single measurement. One

could be inspired by the identification of Volterra kernels

from white noise [10].

Finally, the model presented has certain limitations in-

herent in its structure. A distortion model going to order

3 with a simple instantaneous frequency dependence is in

fact only able to model defects that vary linearly with the

level, and with the instantaneous frequency. This model

is therefore initially suitable for narrow-band modeling of

components with relatively basic behavior. Subsequently,

a wider-bandwidth behavior can be modeled by a polyno-

mial variation of the instantaneous frequency. Similarly,

identifying a model at higher orders of non-linearities can

also allow modeling of a polynomial variation of the inter-

modulation with respect to the level.
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