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Abstract  − A Rogowski coil is well-known current-to-voltage transducer, and in order to use it for the 
high-accuracy measurement of AC current (at power supply frequency) all influencing quantities and 
their contribution should be recognized and analyzed. Therefore, in this paper the analysis of the partial 
influence due to the position of the primary conductor relatively to the secondary coil, with the 
nonhomogeneous density of secondary turns, is analyzed. The measured deviation of the mutual 
inductance in this case showed very good agreement with the theoretical prediction, which is promising 
toward the expected application of such sensor. 
 

I.  Introduction 
 
The influencing quantities, which affect the current-to-voltage conversion by means of Rogowski coil 
(or sensor, Fig. 1, [1]), can be recognized as all imperfections that contribute to the deviations from the 
expected results. These contributions can be identified as mechanical, physical and electrical 
influences. The most obvious are mechanical (it is better to say geometrical) influences due to the 
imperfect preparation of the coils, as well as an isolating body on which the secondary coil has been 
wounded [2, 3]. The second, physical, contribution comes from the deviations from the presumptions 
on which the fundamental principle of that sensor is based: for instance, unhomogeneity of the 
magnetic flux generated by the primary conductor, the small (but finite) width of the wire used for 
secondary coil, etc. Further contributions come from the temperature influences and imperfections of 
the electronic devices used together with the sensor (for instance, electronic integrator). 
The basic idea is to use a Rogowski coil for the high-accuracy measurement of AC current, primary for 
the frequency of power supply network (50 Hz or 60 Hz), and the first step in this direction is to 
recognize and analyze the influencing quantities, their contribution and importance, and to minimize 
these effects in the realization of a real sensor.  
Therefore, in this paper it is analysed the influence of the position of primary conductor (i.e. shift of its 
axe) relatively to the secondary coil (i.e. its axial axe) for a real sensor with some discontinuity in the 
secondary windings. Theoretical consideration has been done with the presumption that the secondary 
coil with N turns is wounded on the toroidal body, made of nonmagnetic material with the rectangular 
cross-section. This theoretical approach for a real model is tested by the comparison with the realized 
model, and the results showed the deviations from the ideal model. This is important for the 
determination of the optimal mechanical construction of a sensor. 
 

II.  Mutual inductance of the geometrically non-ideal system 
 
In the ideal situation, a primary conductor is set exactly on the longitudinal axe of the ideal toroidal 
Rogowski coil, with homogeneous density of secondary turns wounded by a wire with negligible cross-
section (Fig. 1). The inner and outer radius of the coil are rU and rV, respectively, and the height of the 
secondary coil with rectangular cross-section is h. Induced electromagnetic force e(t) in secondary 
turns depends on the mutual inductance M, and the derivate of the primary current i(t): 
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The magnetic flux in the coil is not homogeneous because it hyperbolically decrease [4, 5] with the 
distance from the axe of the primary conductor, as well as the length of the lines of magnetic flux is 
larger on the outside radius (rV) than on the inner radius (rU). Taking these into account, without any 



other influencing quantities, which in other words represents an ideal model, the mutual inductance of 
such system with N secondary turns is: 
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Due to the imperfection of the realization of the first and last turn, even if all other turns are perfectly 
wounded, some discontinuity arise, which can be described as a sector of coil where there is no turn – 
this is marked with angle δ in Fig. 1. Detailed analysis of the influence of correlation between the 
discontinuity δ and the eccentricity of primary conductor (i.e. deviation from the central position), and 
associated influence on the calculation of mutual inductance, is presented in [6]. Furthermore, due to 
this discontinuity δ, the total flux in secondary coil is changed if the axe of the primary conductor does 
not conform to the axial axe of the coil, but exhibit an angle λ as it is shown in Fig. 1. However, in this 
situation the primary conductor is still in the centre of the secondary coil (point S), and there is no 
eccentricity (deviation) from the centre of toroidal coil, which is certainly easier case to analysed.  
 

 
 

Fig. 1. Geometrical system of primary conductor and Rogowski coil 
 
Since we want to examine the dependence of the mutual inductance (or enclosed flux) not only due to 
the angle λ but also on its position according to the discontinuity δ, we will fix the primary conductor in 
the plane of angle ε = 0 and the position of discontinuity δ toward the direction of this plane is defined 
by auxiliary angle ε. 
 

 
 Fig. 2. Definition of the angles λ, ρ and ε 

 
From the described situation, two relations can be written: 
 )costg(arctg ελξ ⋅=  (3) 

 2)sin(sin1cos ελρ ⋅−=  (4) 

Now we need to observe the projection of the primary conductor in the plane that is rotated for angle ε. 
This projection, according to Fig. 2 constitutes the angle ξ to the axial axe of the coil, which is 
presented in Fig. 3. 
 



 
Fig. 3 Projection of primary conductor on the plane rotated for angle ε 

 
Here we need to point out that, in the presented two-dimensional projection, the angle ρ, which is angle 
between the primary conductor and its projection in the presented plane, is not visible. However, in the 
calculation of the total flux we need to take into account the cosine of that angle, determined by (4). 
Furthermore, here is also obvious that the calculation of the magnetic flux for each turn (theoretically 
infinite thin) in the plane presented in Fig. 4 can be divided on three parts, i.e. three influencing areas: 
the first one (I), which is the closest to the primary conductor and forms triangle, the second one (II) 
that has a form of parallelogram, and the third one (III), which is triangle the most distanced from the 
primary conductor. These areas are marked on Fig. 4a and 4b, as well as the lower radial limit for the 
first area and the upper radial limit for the third area. In that manner the differential areas, necessary for 
the calculation of the total flux, can be taken into account. 
 

 

 Fig. 4a. Lower limit for first area (I) Fig. 4b. Upper limit for third area (III) 
 
From further analysis of the geometrical relations follows the upper radial limit for the first area (I) and 
the lower radial limit for the third (III) area: 
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The differential of angle ε the part of one turn is (N·dε)/(2π – δ), and the inductance B on distance r 
from the primary conductor is equal to μ0·I/(2πr). Thus, after calculations of the differential of fluxes in 
quoted areas and introducing the relations (3) to (6), the final expression for mutual conductance for a 
real model is 
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To calculate the dependence of M on the angle λ, it is necessary to define a value of ξ according to (3), 
as well as the angles λ and δ of interest, and calculate the previous equations taking into account the 
change of auxiliary angle ε in the interval [0, 2π]. Since it is easier to measure the higher deviations of 
mutual inductance, for the test of a real model the discontinuity δ = π/6 has been chosen, which is much 
greater value than can be expected in a normal set-up of a sensor. Therefore, on Fig. 5 are presented the 
results of such analysis, where ΔM/M is relative deviation of mutual inductance for a real model, 
defined by (7), to an ideal model, defined by (2), and calculated for values of angle λ1 = π/12 and 
λ2 = π/6. It is obvious the ΔM/M is higher when angle λ has greater value, as well as pretty good 
agreement between the theoretical predictions and measured values; these results are calculated for 
angle ε that starts from 0 (when the discontinuity is in the plane of projection) through the whole circle 
of 2π. As mentioned before, obtained ΔM/M is calculated for discontinuity δ which is much greater 
than in expected and normal set-up of a sensor, which means that in a real situation much lower 
deviations can be expected. 
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Fig. 5. Measured and calculated difference of the mutual inductance between the real model, defined by 
(7) and ideal case defined by (2), taking into account δ = 30º for two values of angle λ, 15º and 30º; the 

ratio rV / rU = 2,5 
 

III. Conclusion 
 
Due to its linearity and "indirect" method of current measurement, a Rogowski coil is promising choice 
for precise measurement of ac currents, not only at power frequencies, but also for much higher 
frequencies. Analysis presented in this paper shows that the positioning of the primary conductor 
relatively to the secondary coil could have important influence of the accuracy of this sensor, which 
leads to the proper set-up of in a real case. 



 
References 

 
[1] D. Vujević, “Rogowski coil as a current transformer” (in Croatian), Automatika, Vol. 39, 

pp. 119−124, 1998 
[2] J. D. Ramboz, “Machinable Rogowski Coil, Design and Calibration”, IEEE Trans. Instr. Meas., 

Vol. 45, No. 2, pp. 511−515, 1996 
[3] W. F. Ray, C. R. Hewson, “High Performance Rogowski Current Transducers”, IEEE Industry 

Applications Conference, Vol.  5, pp. 3083−3090, 2000 
[4] T. Bosanac, “Theoretical Electrotechnics” (in Croatian), Školska knjiga, Zagreb, 1973. 
[5] Z. Haznadar, Ž. Štih, “Electromagnetic Fields, Waves and Numerical Methods”, Ios Pr. Inc., 2000 
[6] L. Ferković, D. Ilić, R. Malarić: “Analysis of the mutual inductance of a precise Rogowski coil”, 

IMTC 2007 Conference, CD Proceedings (#7685), Warsaw, May 1-3, 2007 
 


