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Abstract-  This paper develops the synthesis of some elementary cubic spline virtual instruments 
associated to the symbolic transmittance of circuits. The implementation of these virtual instruments is 
based on the power of LabVIEW programming language to develop modular applications. The method 
has a pronounced educational purpose and can be used in electric and electronic circuits time analysis. 
The general symbolic transmittance of such circuits is expressed like a linear combination of 
elementary symbolic transmittances. An elementary first or second order differential equation is 
associated to an elementary symbolic transmittance. The solutions of this equation are given by a third 
order spline approximates and the algorithms lead to the synthesis of inferior order spline virtual 
instruments. Using a cascade connection of such elementary virtual instruments, a high order virtual 
instrument associated to the general symbolic transmittance is obtained. Finally, the circuit response 
can be determined. 

 
I Introduction. Symbolic Transmittance [1] 

 
Circuit analysis represents an essential part of the teaching process dedicated to the electronic and 
electrical engineering students. The numerical methods are widely used for this analysis and they are 
based on complex mathematical calculus.  
For a common circuit, the n order differential equation, with constant coefficients, looks like this [1]: 
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We introduce the derivable operator “p” for an x(t) function as [1]: 
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The derivable operator p=d/dt can be considered as an algebraic variable for which the addition, 
subtraction and multiplication operations remain valid. It is important not to confuse this operator with 
variable “s” of Laplace transformations, which is a complex variable. By applying the algebraic 
operator “p” to the equation (1), we obtain the symbolic relation: 
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It results that [1]: 
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where )p(ℑ  is called the global symbolic transmittance of the circuit [1]. 
By decomposing the global symbolic transmittance in partial symbolic transmittances, we will write for 
most of the applications: 
    ∏ℑ=ℑ )p()p( nk,mk      (5) 
where )p(nk.mkℑ  is a ratio of first or second order polynomials and will be called symbolic elementary 
transmittances; 2nkmk ≤≤  
There are the following types of elementary symbolic transmittances: 

- elementary symbolic transmittances of second order: 
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- reference symbolic transmittance of second order: 
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- elementary symbolic transmittances of first order : 
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- - reference symbolic transmittance of first order: 
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II. Spline Virtual Instruments Associated To Symbolic Transmittances Of Circuits 

 
Using Labview programming software, which provides a very good input data control, a high 
flexibility in data analysis and the possibility to develop modular applications, the symbolic 
transmittances )p(),p(),p( 221202 ℑℑℑ  will be implemented using the second order T02[], T12[], T22[] 
virtual instruments [6, 8]. Similarly the symbolic transmittances )p(01ℑ  and )p(11ℑ  will also be 
created using the first order T01[ ], T11[ ] virtual instruments. 
 
A. The T02[]T12[ ] And T22[ ] Virtual Instruments 

 
For the T02[] virtual instrument we consider the second order symbolic transmittance with the next 
associated differential equation [1,7]: 
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or explicitly : 
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The relation (11) can be written as follows: 
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where: 
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We will create a spline virtual instrument T02[] based on the spline approximate solution of the 
differential equation (26). Spline cubical polynomial functions are used in the algorithm [10, 11, 12].  
We will consider a uniform division of the input signal’s time support, [0,tN], that has an iteration step 
of h=ti+1-ti: 
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An elementary cubical spline function is defined on [ti, ti+1]: 
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For t=t1; h=t1-t0 
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By replacing, we obtain: 
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By writing: 
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We obtain : 
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For t=ti+1 
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With condition: 
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By replacing: 
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The coefficient αi is obtained: 
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The convergence and the uniqueness of the solution are analysed in papers [1, 3, and 7]. 
The approximate solution is obtained using the T02[] virtual instrument, which implements the previous 
relations. The block diagram and the icon of this instrument are presented in Figure 1. 
 

 
a 

 
 
 
 
 

 
T02 [Ti, Xi, a2, a1, a0,b0]={Qi, Q’i, Q”i} 

 
 
 

b 
Figure 1 The block diagram and the icon of T02[] virtual instrument 

 
The significance of the input and output values are: Ti={ti}; ti∈[0, tN]; Xi=x{ti} Qi={qi(ti+1)}; 
Q’i={q’i(ti+1)}; Q”i={q”i(ti+1)}; a2, a1, a0, b0 - are set according to the circuit type; N- the number of 
points; h - the length of [ti-1, ti] interval. The output vectors of the T02[ ] virtual instrument are the 
approximate response, respectively the first and second approximate response derivatives. 

Yi≈Qi; Y’i≈Q’i; Y”i≈Q”i;     (26) 
In the T02[ ] structure, by making b0 =1, we obtain the reference T0

02[ ] virtual instrument: 
    T0

02[ ]= T02[ ] ⏐b0=1     (27) 
The symbolic transmittance T12[ ] is described by the relation (17). By expanding we can write: 
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We may notice that the T12[ ] virtual instrument associated to the symbolic transmittance )p(0
02ℑ  

supplies the Qi, Q’i, Q”i outputs. For the complete time support [0,tN] the circuit’s response is given by: 
    Yi≈b0⋅Qi + b1⋅Q’i      (29) 
The T12[ ] virtual instrument synthesis will have the structure from Figure 2. 
 

 
Figure 2 – Synthesis of the T12[ ] virtual instrument 

 
Relation (6) describes the symbolic transmittance )p(22ℑ . Similarly the synthesis of T22[ ] virtual 
instrument associated to symbolic transmittance )p(22ℑ is based on the circuit’s answer vector: 
    Yi≈b0⋅Qi + bi⋅Q’i+b2⋅Q”i     (30) 
 
B. The T01[ ] And T11[ ] Virtual Instruments 
 
A T01[ ] spline virtual instrument will be created using the approximate solution of the next equation:
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Due to the weak convergence of the approximate solution, we use an improved iterative algorithm that 
calculates the solution in the middle of each interval [ti,ti+1], where h=. ti+1-ti. We consider the circuit 
equation: 
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with initial conditions : 
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According to relation (1) we have n = 1 and we choose m = 3, so that we build cubic polynomial Spline 
functions. After simple operations it results: 
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The approximate solution is obtained by using T01[ ] virtual instrument with the structure described by 
the equation: 

T01[Ti, Xi, Qi, a0, b0]={Qi, Q’i}    (37) 
The structure of the T01[ ] and T02[ ] virtual instruments is similar. The difference consists in the 
mathematical algorithm, which includes a convergence correction.  
In a similar way with T22[ ], the synthesis T11[ ] virtual instrument can be obtained. 



C. Virtual Instrument Associated To Global Symbolic Transmittance T[ ],  
 
A virtual instrument associated to the global symbolic transmittance T[ ] can be obtained by  
connecting the first and second order type virtual instruments, function of decomposing of the global 
symbolic transmittance )p(ℑ  in elementary symbolic transmittances. For example the global symbolic 
transmittance: 
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can be decomposed: 
)p()p()p( 0

011213 ℑ⋅ℑ=ℑ      (39) 
The next virtual instrument will result: 

T13[ ]= T12[ ]⋅T0
01[ ]    (40) 

The output vector Qi of T12 will become the input vector for T0
01[ ] virtual instrument. The synthesis of 

T13[ ] virtual instrument is shown in Figure 3. 

 
Figure 3.– Synthesis of T13[ ] virtual instrument; first synthesis possibility 

 
III. Application 
 
We consider a forth order low pass filter (LPF) with the transmittance given by the equation: 
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In relation (41) Au is the gain; p is the derivate operator; ωr is the reference frequency defined in a 
relation with a point situated in the transfer characteristic; c1, d1, c2, d2, are coefficients that depend on 
the transfer function type. (For our application these coefficients have the next values c1= 2.1850, d1= 
5.5340, c2= 0.1960, d2= 1.2000 and they correspond to a Chebyshev forth order filter [2] ) 
The coefficients of equation (12) will be: 
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We consider a unit impulse vector Xi=Di=[1,0,0,…0] of N length applied to the input of the forth order 
LPF virtual instrument. The implementation of this application implies the cascade connection of two 
T02[ ] elementary virtual instruments. The, ωr, a1, b1, a2, b2 (Au=1) specific values permit to calculate, 
with a formula node structure, the input values A, B, C for the first and the second T02[ ] virtual 
instruments. The virtual instrument T04[ ] outputs the approximate response h[n]. By using an FFT 
operator, the Fourier transform of the h[n] signal and implicitly the frequency characteristics ]n[hFFT  
of Chebyshev forth order low pass filter described by the transmittance from relation (11) are 
calculated. The results are presented on the virtual instrument panel (Figure 4). 
 



 
Figure 4 Chebyshev LPF forth order Spline virtual instrument-front panel. 

 
IV. Conclusions 
 
The symbolic solutions of differential equations associated to electric circuits lead to symbolic 
transmittances )( pℑ , expressed by the p derivation operator. Using the modular proprieties of 
LabVIEW graphical programming language a cubic spline virtual instrument T[ ] associated to the 
circuit global symbolic transmittance is created and provides the response for a certain input signal.  
The Spline virtual instrument are conceived as an approximate analyse procedure. It is successfully 
used when the “p” inverse transformation cannot be exactly realised. The advantage of the method 
consists in the simplicity of the mathematical instrument that has been used.  
The method can be successfully used as a teaching tool starting with the 2nd year of studies, when 
mathematical and circuits’ theory knowledge is already known by students. Our virtual instruments 
allow the analysis of linear, concentrated and stationary circuits for any signal waveform and can be 
used in circuits’ analysis, modelling and testing processes. 
The method represents a teaching tool for basic theories and fundamentals of numerical methods; it 
helps students to acquire skills needed for implementing a computer solution; and finally it provides an 
environment where they can familiarize with LabVIEW software and its use in solving engineering 
problems. 
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