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Abstract- In this paper, a method to estimate the rms value of a noncoherent sampled sinewave by 
means of the formula used in an AC analog electronic voltmeter is presented. Adding some 
modifications on the algorithm, the accuracy obtained in this case was improved. This method is well 
suited for real-time applications in which the measurement of the sinewave rms value with relative high 
accuracy is sufficiently. The performances of the method proposed are proved by means of computer 
simulation as well as experimental results. 
  

I. Introduction 
 
One of the most important parameter of a sinewave is its root mean square (rms) value because it 
relates directly to the sinewave power. The rms value of a sinewave voltage can be measured by an AC 
analog electronic voltmeter [1]. For this purpose the AC analog electronic voltmeter contains a mean 
value converter [1], [2], involving two basic operations: first the input is applied to a rectifier and 
secondly the mean value of the rectifier output is determined. To obtain the sinewave rms value the 
mean value converter output signal is multiplied by a scale factor which depends on the rectifier type. 
In an AC analog electronic voltmeter which contains a mean value converter with a full-wave rectifier, 
the rms value of the input sinewave x(t) characterized by its amplitude A and frequency fin (= 1/T) is 
given by: 
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where:   
• Xrms is the rms value of x(t) (the ideal sinewave rms value is 2/AX idealrms = ); 

• |x(t)| is the modulus of x(t), obtained at the output of the full-wave rectifier;  
• Xm is the mean value of |x(t)|, obtained at the mean value converter output (the ideal value is 

π= /2AX idealm );    

• Kf is the scale factor ( 22// π== idealmidealrmsf XXK ). 
In this paper the measurement of the sinewave rms value by means of a discrete-time system in 
noncoherent sampled mode is investigated. The theoretical expression of the rms value of a 
noncoherently sampled sinewave obtained by the formula (1) is derived. Based on this first task, a new 
method is proposed to increase the estimator accuracy and its performances are studied. 
 

II. Expression of the sinewave rms value in the noncoherent sampling mode 
 

Let us consider a sinewave of amplitude A, frequency fin (= 1/T) and phase ϕ 

( ) ( ).2sin ϕ+π= tfAtx in  

When the signal x(t) is digitized by mean of a digital waveform recorder the discrete-time signal x(n),  
n = 0, 1,2,... is obtained. The relationship between the input frequency, fin and the sampling frequency, 
fs is given by: 
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where N is the number of recorded samples, J is the number of complete recorder cycles and δ is the 
fractional part of the recorded cycles (0 ≤ δ < 1). For δ = 0 the sampling process is considered as 
coherent in terms of frequencies [3].  
The theoretical rms value of x(t) considering the recording interval is: 
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in which 22/π=fK . So, the rms value of x(n) can be estimated by: 
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and the relationship between Xrms and rmsX̂ is 

.ˆlim rmsNrms XX
∞→

=  

Xrms is given by (see Appendix) 
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0.5, then Xrms = Xrms ideal. Fig. 1 shows Xrms (calculated by (7)) and rmsX̂  (calculated by (5)) as a 
function of the number of recorded cycles (i.e. J + δ). The sinewave obtained by simulation is 
characterized by its amplitude A = 2 and its phase  ϕ = 2π/3 rad. The number of recorded cycles varies 
in the range [40, 45] with an increment of 0.1. The number of recorded samples is N = 2048. 
 

 
Fig. 1. Xrms (solid line) and rmsX̂ (dotted line) as a function of the number of recorded cycles. 

 
As it was observed in Fig. 1 the differences between Xrms and rmsX̂ are relatively small. In order to be 
more precise, using (7) the relative error of the rms value measurement was established as: 
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From the above expression it has been demonstrated that the maximum relative error εrms,was given by: 

( )
( )

( )
( )

( )
( )

( )
( )⎪

⎪

⎩

⎪
⎪

⎨

⎧

<δ≤
⎭
⎬
⎫

⎩
⎨
⎧

δ+
πδ−

+
δ+

δ
−

δ+
πδ−

+
δ+

δ
−

<δ≤
⎭
⎬
⎫

⎩
⎨
⎧

δ+
πδ−

+
δ+

δ
−

δ+
πδ

+
δ+

δ
−

=ε

15.0,
2

sin2,
2

cos1max

5.00,
2

cos1,
2
sinmax

max

if
JJJJ

if
JJJJ

rms  

Fig. 2 shows the maximum of the relative error modulus of rmsε  in % as function of the number of 
recorded cycles obtained during ϕ scan (ϕ varies in the range [0, 2π) rad. with an increment of π/50 
rad). The number of recorded cycles varies in the range [40, 45] with an increment of 0.1. The 
sinewave signal is the one used to obtain the results presented in Fig. 1. 
 

 
Fig. 2. The maximum of the relative error modulus of the rms value measurement as function of the 

number of recorded cycles obtained during ϕ scan in the range [0, 2π) rad. 
 
As it can be observed from Fig. 2 for J ≥ 40 the maximum of the relative error modulus is smaller than 
0.26%. 
 

III.  A new method to improve the rms value estimation 
 
It is obvious that the bias of the rms value measurement is determined by the part of signal period δT at 
the end of (J + δ)T. A method to reduce the bias of the rms value measurement is to multiply a priori 
the signal x(t) by a window w(t). Thus, the signal xw(t) = x(t)⋅ w(t) is obtained. Ones of the most used 
windows are the cosine windows [4], defined by : 
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where H is the window order and ah are the window coefficients. 
The theoretical rms value of xw(t) during the recording interval is: 
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In case of coherent sampling, after some calculus, it can be established that 
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Based on the above expression the rms value of x(n) can be estimated by: 
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where w(n) is the discrete-time H-term cosine window. It should be noted that for a discrete-time H-
term cosine window, a0 is equal to the normalized window peak signal gain NPSG 
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Fig. 3 shows the maximum of relative errors modulus of the rms value measurement obtained using (5) 
for rmsX̂ and (13) for rmsX~  as function of the recorded cycles number during ϕ scan. When the rms 

value is estimated by rmsX~ , the Hann window and 4-term Blackman Harris window were used. The 
amplitude of sinewave was A = 2. The phase of the sinewave ϕ varies in the range [0, 2π) rad. with an 
increment of π/50 rad. The number of cycles recorded varies in the range [40, 45] with an increment of 
0.1. The number of the recorded samples is N = 2048. The same sinewave as in Fig. 1 is used. 
 

(a) (b) 
  
Fig. 3. The maximum of the relative errors modulus of the rms value as function of the recorded cycles 

number obtained during ϕ scan in the range [0, 2π)rad. The rms value is estimated by: 
a) rmsX̂  (‘x’ mark and dotted line) and b) rmsX~ with Hann window (star and dotted line) and 

4-term Blackman-Harris (circle and dotted line). 
 
From Fig. 3 it is clearly evident that the rms value is more accurately estimated by rmsX~ than rmsX̂ . 

When the rms value is estimated by rmsX~ the maximum of the relative error modulus is smaller than 

0.06% (more than four times smaller than when the rms value is estimated by rmsX̂ ). 
 
 

IV. Experimental results 
 
The performances of the method proposed are also verified by means of experimental results. For this 
purpose several acquisitions are made at different sinewave frequencies between 1878 – 1920 Hz. The 
amplitudes of the sinewaves are equal to 2 V. The sinewaves are obtained from the HM8130 signal 
generator. The TMS320C5x board is used as the acquisition system. The sampling frequency is    
48077 Hz. For each frequency a number of 25 records are collected. Each record contains N =1024 
samples. The sinewave rms value is estimated also by means of the Interpolated Discrete Fourier 
Transform (IpDFT) method with Hann window [5]. The IpDFT method provides very high accurate 
estimate of the amplitude of a sinewave (and also of the sinewave rms value). Fig. 4 shows the 
modulus of the difference between the average of the sinewave rms values estimated by the proposed 
method and the one of the rms values estimated by means of the IpDFT method as a function of 

(12) 

(13) 



frequency. In the proposed method the Hann window and 4-term Blackman-Harris window are 
employed. 
 

 
Fig. 4. The modulus of the difference between the average of the sinewave rms values estimated by the 
proposed method and the one of the rms values estimated by means of the IpDFT method as a function 

of frequency. In the proposed method the Hann window (star and dotted line) and the 4-term 
Blackman-Harris window (circle and dotted line) are used.  

 
The results obtained by the proposed method differ from the ones obtained by means of the IpDFT 
method beginning to the fourth digit after the decimal point. Thus, the sinewave rms values are high 
accurately estimated by the proposed method. 
 

V. Conclusion 
 
The expression of the rms value of noncoherently sampled sinewave calculated by the formula based 
on an AC analog voltmeter works is derived. To increases the rms value estimation accuracy obtained 
by using the derived expression a method is proposed. By appropriate choice of J and N values the rms 
value can be relative high accurately estimated by the proposed method. The performances of this 
method have been proven by computer simulation and also by experimental results. The main 
advantage of the proposed method is that this is very simple to implement. Thus, the proposed method 
is well suited for real-time measurement of the rms value of a discrete-time sinewave. 
 

Appendix  
Calculation of Xrms 

 
The rms value of the part of the sinewave x(t) (given by (2)) that was discretized is 
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For 0 ≤ ϕ < π 

• if 0 ≤ δT < t1, where t1 = (π-ϕ)T/(2π), it can be established 
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Thus, Xrms becomes 
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• if t1 ≤ δT < t2, where t2 = (2π-ϕ)T/(2π), it can be established 
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Thus, Xrms becomes 
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• if t2 ≤ δT < T, it can be established 
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Thus, Xrms becomes 
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For π ≤ϕ < 2π, the same procedure is used and the same expression for Xrms is obtained, but with ϕ 
replaced by ϕ-π. Thus, expression of  Xrms is given by 
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