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A b s t r a c t – In this paper we focus on the problem of scheduling time-critical data flow over a 
measuring tree network. We assume that data are operated in discrete time and their arrival and 
deadline processes are arbitrary. Our goal is to determine a policy which transmits data with 
minimum extension time at every node (every link) in a tree network. The models existing in the 
literature do not consider simultaneous performance of various hardware components of a complex 
system. When a hardware component of the system fails, the system reconfiguration is often less 
than perfect. On this assumption we introduce an algorithm to model the availability of measuring 
systems with colored Petri nets (CPN). Regarding the fact that the availability of a measuring cell i 
(or branch in the network) is calculated with Markov chains, we model our system with stochastic 
CPN. The utility of our approach in alleviating the computational burden of measuring systems 
availability is illustrated via a Markov chain structure. 
Key-words: Tree networks, optimal scheduling, colored Petri nets, Markov chains. 
 

1. Introduction 
 
Many systems, and particularly communication networks, are formed by a collection of agents which 
cooperate using a production schema and compete for resources. The cooperation corresponds to the 
process plan: each agent in the system transforms some items that are consumed by others in some 
prescribed fashion to obtain the final products. Competition is introduced by technical or economical 
restrictions: the different agents share some scarce resources (sensors, switches, communication 
lines) to perform their tasks. There are several applications of packet switched communication 
networks where a high variability in packet delivery delay is undesirable. In packetized voice 
communication systems for example, the quality of signal degrades when the end-to-end delay 
exceeds a prescribed threshold. In networks carrying control information, a packet incurring a delay 
larger than the time within which the system state changes becomes useless for control purposes     
T1-2I. An important problem in these systems concerns the design of network controls so as to 
minimize the number of packets reaching the destination after a prescribed threshold. The complex 
measurement systems include a set of sensors, transducers, multiple part routing due to alternate 
sequencing in the processing of data. When a device, sensor, transducer or any other hardware 
component of the system fails, the system reconfiguration is often less than perfect. The notion of 
imperfection is called imperfect coverage, and it is defined as probability c that the system 
successfully reconfigures given that component faults occur. The imperfect repair of a component 
implies that when the repair of the failed component is completed it is not “as good as new”. A 
dependability for evaluation of performance of a manufacturing system is presented. The meaning of 
dependability here is twofold [3-4]: 
- System availability and reliability 
- Dependence of the performance of measuring system on the performance of its individual 
physical subsystems and components. 
The model considers the task-based availability of a measuring system, where the system is 
considered operational as long as its task requirements are satisfied, that means that the system data 
processing capacity exceeds a given lower bound. In this paper we model the measuring system with 
stochastic colored Petri nets. In our assumption the availability of a measuring cell i (i = 1,2,…,n, 
where n is the total number of part type cells in the measuring system) is calculated with a Markov 
chain which includes the failure rates, repair rates, and coverability of the respective devices in the 
measuring cell i. The color domains of transitions that load cell i include colors that result in a value 
between 0 and 1, and the biggest value designates the cell which will transmit data to the root node of 
the tree network of the measuring system. From the point of view of queuing theory, networks with 
tree topology are a first step toward an effort to generalize results for single queues. In section 2, the 
model of the tree network is described, in section 3 is shown the model of a measuring system, and 
the Markov model of a measuring cell is given in section 4. 
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2. Transmission scheduling in a tree network 
 
Suppose that data measured by sensors arrive at any of the nodes of a tree network with root node 
D, with T links between each pair of directly connected nodes, and are designated for node D. 
Three is a deadline and an extinction time (arrival time + deadline) associated with each message, 
and a message has to reach the destination before its extinction time expires. If the extinction time 
of a message expires while it is waiting for the repairing of a damaged device in the system, or is 
being transmitted to an intermediate node, then the message is considered lost and the system 
reconfigures itself taking into account another message from a downstream mode. We wish to find 
a policy for scheduling the transmission of messages that minimizes the total number of lost 
messages. We assume that in the tree network the distance (in number of hops) between each node 
and the root node is known. We also assume that the system is discrete (e.g., is slotted). At slot t 
the optimal policy would never transmit a message with extinction time strictly less than t+k at a 
node that is k hops away from D, as this message will be lost. A message at a node k which hops 
away from D is eligible [4] for transmission at time t if its extinction time is at least t+k. In [5] it is 
shown that the policy which transmits the eligible messages with the shortest extinction time at 
every node minimizes the number of lost messages over any time interval. This is referred as the 
Shortest Time to Extinction (STE) policy. In [6] it is proven the following theorem, which 
complete the trivial implementation of the STE policy in a distributed manner, once a node knows 
its distance from the root node D. 
Theorem: For every scheduling policy p 

 
TSTE(t) ≤ TP(t), ∀ t ≥ 0.                (1) 

 
In the given theorem, it is supposed that the number of links between any two directly connected 
nodes of the network is identical. The next example shows the necessity of this requirement. 
Consider the tandem network of Fig.1 [6]. 
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Where (By . Ey) is a matrix multiplication. 
For example consider the process plan of part type L1 shown in Figure 1. 

 

 

 

Fig.2 Process plan for part type L1

Our process plan first requires operation op 1 and then op 2 for complete processing. We assume 
that our FMS can complete 5 different types of operations. For part type L1, we have: BL1 = [0 0 0 
1 1]  

1LE  =  

01A000op1
2A0000op2

00000op3
00000op4
00000op5

op1op2op3op4op5

 
Where A1 and A2 are the availability of measuring cell 1 (which performs operation 1), 
respectively the availability of measuring cell 2 at time t. The availability Ai of cell i is calculated, 
as shown in Section III, with Markov chains. We notice that Ai is reevaluated at each major 
change in the process plan of FMS (such as occurrence of events: damages of hardware 
equipments, changes of process plan, etc). Assuming that A1 > A2, then we assign to A1 value 1 
and to A2 value 0, so that applying (2), the initial color of the token corresponding to a part that 
belongs to part type L1 with identification 1 would be VL1.1 = (L1.1, 00001). Note that the 
information carried in the initial color indicates the first (next) operation(s) to be performed. 
Generally, we may say that V is the set of colors that represent all the possible combinations of 
operations that can be performed in the mesuring system. Each member of set C is a vector of n 
components, where n is maximum number of operations performed in the cell. For example, in a 
FMS with 5 operations to be performed, we may have V = {00000, 00001, …, 11111}. For 
simplicity, we assumed that the function which maps operations to measuring devices on which 
these operations can be performed is modeled in the associated CPN with places, labeled with the 
operation identification number. 

  

4. Modeling the measuring cell system 

 

The requirement for measuring cell i, including N1 devices of type Mi, is that at least ki of these 
devices must function for the system to be operational. To determine the system availability which 
includes imperfect coverage and repair, a failure state due to imperfect coverage and repair was 
introduced [3]. To explain the impact of imperfect coverage in measuring, consider the system that 
includes two identical measuring devices (Fig.3). If the coverage of the system is perfect, i.e., c = 
1, then operation op 1 is performed as long as one of the devices is operational. 
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Fig.3 The measure system with two identical devices 

 



If the coverage is imperfect, then operation op 1 fails with probability 1 – c, if one of the devices 
in Fig.3 fails. We may say that, if operation op 1 has been scheduled on device M1 that has failed, 
then the system in Fig.3 fails with probability 1 – c. The Markov chain for machine cell i is shown 
in Fig.4. The coverage of the cell in Fig.4 is c and successful repair factor is r. At state ki, cell i is 
functioning with only ki devices operational. 
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Fig.4 Markov model for cell i 

 

At state Ni cell i is functioning with all Ni devices operational. The state of cell i changes from 
working state wi, for ki ≤ wi ≤ Ni , where wi is the number of operational devices in cell i, to failed 
state Fi , either due to imperfect coverage (1-c) or due to imperfect repair (1-r). If the fault 
coverage of the system and repair of the components are perfect, the Markov chain in Fig.4 
reduces to a one-dimensional model [7]. The solution of the Markov chain model in Fig.4 is a 
probability that at least ki devices in cell i are working at time t.  Availability formula for cell i is 
given in the next relation: 

∑
=

=
i

ii
i

N

kw
ki (t)P  (t)A , for i = 1, 2, …, n         (3) 

 

Where: Ai(t) = availability of cell i at time t; 

( )tP
ik  = probability of ki devices being operational in cell i at time t; 

Ni = total number of devices of type Mi in cell i; 

ki = required minimum number of operational devices in cell i. 

 

After a Markov chain for each cell of the measuring system is constructed and desired 
probabilities Ai(t),  i = 1, 2, …, n corresponding to machine cell are determined, the stochastic 



colored Petri net can be initialized, and the simulation process of FMS begins. In Fig.4 the 
parameters λ, c, r denote respectively the failure rate, repair rate, coverage factor, and the 
successful failure repair rate of a measuring equipment. The first part of the horizontal transition 
rate with the term 1-cλ represents the failure due to imperfect coverage of alternative equipment. 
The second part, with the term 1-r represents imprecise repair of the hardware components. The 
vertical transitions reflect the failure and repair of the equipments. We assume that only one device 
fails at a time, in a certain operation cell.  

 

5. Conclusions 

 

In this paper we have proposed a new architecture to model a large class of measuring systems 
using stochastic colored Petri nets. Advantages of this approach are: 

- Alternate sequencing of operations is allowed during processing; 

- Device assignments for operations are made dynamically during processing; 

- The model of the measuring system created captures all possible operation sequences in the 
system. 

An analytical technique for the availability evaluation of measuring systems was also presented in 
this paper. The advantages of this approach are: 

- The construction of large Markov chains is not required, and also; 

- It incorporates imperfect coverage and imperfect repair factors in the Markov models; 

- It reveals when the system coverage and the component repair are not perfect; 

- It allows determination of the timing of a major repair policy of the systems. 

Further researches will focus on modeling measuring systems with semi-Markov processes. 
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