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Abstract – The growing demand of mixed–signal
integrated circuits encourages the research of Built–
In Self–Test (BIST) techniques to achieve simpler
and less expensive testing processes. High quality
sinusoidal oscillators based on a ∆–Σ topology are
an effective solution to perform the test of this kind
of devices. Unfortunately, due to the in–loop 1–bit
quantizer nonlinearity, several problems of stability
have been observed. A stability analysis on the be-
havior of the oscillator based on a second order ∆–Σ
modulator presented in [1] is described in this pa-
per. In particular, it is shown that the oscillator is
intrinsically unstable and its complete dynamics is
very difficult to predict exactly. Finally, a possible
stabilization strategy is proposed.
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I. Introduction

One of the most demanding problems dealt with
by microelectronic industry, is the increase in testing
costs associated with the production of Integrated
Circuits (ICs). This has been caused by the growth
in complexity of the electronic devices and by the
simultaneous reduction in the costs of chip fabrica-
tion processes. This trend has been further stressed
by the widespread diffusion of mixed–signal inte-
grated circuits and by the competitive price pres-
sures and severe time–to–market demands of con-
sumer electronics. As a result, nowadays costs for
testing mixed–signal circuits may cover nearly 50%
of the overall production budget [2], [3].

Built–In Self–Test (BIST) techniques allow a dras-
tic cut in such expenses through the integration of
various testing resources directly on chip, thus in-
creasing the controllability and observability of cir-
cuital parameters. An effective mixed–analog/digital
BIST scheme results from the tradeoff between fea-
tures such as reliability, high precision, programma-
bility, flexibility, low cost of integration, and low ana-
log complexity [4]. Since often analog–to–digital con-
verters (ADCs) are the key components of mixed–
signal circuits, it is useful to insert low cost, high
quality sinusoidal waveform generators in the BIST
schemes used to test these devices. Sinusoidal oscilla-
tors based on a ∆–Σ topology, i.e. digital resonators
exploiting 1–bit delta–sigma properties, possess all
of the above stated features. Particularly, they avoid
the use of hardware multipliers and reduce the ana-
log part of the mixed–signal circuit to the use of a

1–bit DAC only. Several implementations of ∆–Σ
resonator–modulators have been proposed [1], [4]. In
this paper it will be shown the critical behavior of
one such implementations [1]. At first, some results
about ∆–Σ resonator–modulators stability are illus-
trated. Then, a stability analysis of the oscillator
based on the root locus technique is described. Fi-
nally, a possible solution is proposed to stabilize the
circuit.

II. Stability issues in delta–sigma
resonator–modulators

Most of ∆–Σ resonator–modulators derive from
the harmonic digital resonator based on the cascade
of two discrete–time integrators in a loop, with the
sign of one integrator being positive and the other
negative [1]. In these structures, the oscillation fre-
quency depends on one or two multiplicative coeffi-
cients. In order to avoid the use of hardware mul-
tipliers and multi–bit D/A converters, a ∆–Σ mo-
dulator can take the place of one of the registers in
the loop. The increase in circuital complexity due
to the introduction of the modulator is largely coun-
terbalanced by the benefit of using a single–bit out-
put, some shift registers and a single–bit multiplier,
i.e. a multiplexer. In particular, if a second order
∆–Σ modulator is employed, the circuit presents the
structure shown in Fig. 1, where the frequency of the
self–generated sinusoidal oscillation is given by the
product a12a21, and the signal amplitude depends
both on a12, a21 and on the system initial conditions
(x1[0], x2[0], u1[0], v1[0], y[0]) [1]. If the parame-
ter a12 is chosen as a power of 2, the corresponding
multiplier can be implemented with a shift register.
Moreover, the multiplication by a21 can be achieved
using +a21 and −a21 as the two inputs of a multi-
plexer, controlled by the 1–bit output y[·]. By em-
ploying a white noise input to represent the behavior
of the 1–bit quantizer, the Noise Transfer Function
(NTF) of the resonator-modulator on the whole is
given by:

NTF (z)=
1 − 2z−1 + z−2

1 +(a12a21 − 2)z−1 + z−2
·NTF ′(z) (1)

where 0 < a12a21 < 4 and NTF ′(z) = (1− z−1)2 is
the ordinary noise transfer function of the internal
2nd–order ∆–Σ modulator. It can be shown easily
that a couple of poles and a couple of zeros are in-
serted on the unit circle by the cascade of the two
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Fig. 1. Block diagram of the considered modulator–
resonator. The parameters a12 and a21 determine the
frequency of the generated sinusoid.

integrators outside the ∆–Σ modulator. The nor-
malized frequency at which such new poles occur is
arccos(1− a12a21/2), that is the frequency of the si-
nusoidal waveform that the system generates [4]. Un-
fortunately, the additive linear model is too coarse
to cope with stability issues. In fact, it has been
shown that, under certain initial conditions, the cir-
cuit becomes unstable and saturates quickly [5]. The
unpredictable behavior of the oscillator is confirmed
by the result of several simulations performed by the
authors using floating point arithmetic over a period
of about 3 hours of real–time continuous operation.
This time interval, that is much longer than the os-
cillator would be required to work during a typical
test process, has been evaluated by setting a clock
frequency equal to 3.07 MHz and by counting a suit-
able number of clock cycles. As an example, in Fig. 2
the last 2 · 103 samples of the system state variable
x1[·] are plotted, by assuming a given set of initial
conditions (x1[0] = 0.0, x2[0] = 0.15265, u1[0] = 0.0,
v1[0] = 0.0, y[0] = 1.0). The values of a12 and a21 are
chosen so that the frequency of the self–generated si-
nusoid is equal to 22 kHz. Note that, the waveform
suddenly diverges after about 20 equivalent minutes
of real–time simulation.

In order to appreciate the erratic behavior of the
resonator–modulator under examination, in Fig. 3 it
is shown the crash time of the oscillator as a function
of the generated sinusoid frequency, evaluated con-
sidering a frequency resolution of 500 Hz. Missing
points on the graph indicate that the system oper-
ated correctly over the given period of time. In the
inset, it is shown the result of an additional simu-
lation, carried out in the interval 21-23 kHz with a
frequency resolution of 50 Hz. Note that, the finer
resolution reveals other crash points, thus confirming
the critical behavior of the system. It has been ob-
served that a little variation in frequency can cause
a sudden malfunction after an unpredictable time
ranging from few milliseconds to several minutes of
real–time operation. According to the additive linear
model, the failure of this system can be considered as
the consequence of the large amount of shaped noise
power which is fed back into the resonator. The main
consequence of the coarse quantization error is that
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Fig. 2. Time waveform of x1[·]. The signal frequency is
22 kHz and the waveform diverges after about 20 real–
time minutes.

1 2 3 4 5 6 7 8 9 10

x 10
4

10
−4

10
−2

10
0

10
2

10
4

2.1 2.2 2.3

x 10
4

10
0

10
2

10
4

cr
a
sh

ti
m
e
(s
)

frequency (Hz)

Fig. 3. Crash time of the oscillator as a function of
the frequency. As a12a21 increases, the stability of the
oscillator deteriorates.
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Fig. 4. Trajectory of the x1[·] state variable on the phase
plane. In the inset, a zoomed portion of such a trajectory
is shown. Since the orbits are not superimposed, the
corresponding waveform is not exactly periodic.

the overall system is very sensitive to variations in
the initial conditions of state variables. Sometimes,
this behavior is referred to as chaotic [6]. This is
further evidenced in Fig. 4, where the aperiodic pat-
terns of the x1[·] cyclic trajectory are shown on the
phase plane. Unfortunately, an analytical stability
assessment of the resonator–modulator appears to
be excessively complicated to be solved analitically.
For this reason, in the next section, the describing
function method (DFM) is employed to perform a
stability analysis based on the root locus.

III. A stability analysis of the 1–bit
∆–Σ resonator–modulator

The DFM is a classical technique to detect limit
cycles in nonlinear systems [7]. This method is based



on two main hypotheses:
1. the input signal of the nonlinear component is

a sinusoid;
2. most of the power of the output signal of nonlin-

ear element is associated with the fundamental
harmonic.

According to the DFM, a nonlinear element in a sys-
tem can be approximated by the ratio between the
the output fundamental and the input sinusoid. Usu-
ally, this function depends on both the amplitude
and the frequency of the sinusoidal input to the non-
linear element and it consists of a gain and a phase
shift. In ∆–Σ modulators, the DFM allows com-
plete prediction of the system stability only if the
phase uncertainty introduced by the 1–bit quantizer
is taken into account [8]. However, since for the cir-
cuit in Fig. 1 the phase of the self-generated sinusoid
can be exactly computed [4], the phase uncertainty
can be considered equal to 0. As a consequence, the
1–bit quantizer can be modeled in the z–domain sim-
ply by a global signal gain which, in the following,
will be referred to as λ. This gain is time–varying
and results from the ratio between the constant unit
amplitude output and the variable amplitude input
of the quantizer. According to this definition the gain
varies from λ → +∞ when v1 → 0, to λ → 0 when v1

becomes very large. Thus, the system keeps on being
nonlinear as the gain varies chaotically across sam-
ples. However, since the modulator–resonator can
be supposed to be linear during a single sampling
period, the system can be described by the following
space–state model:




x2[n+1]
x1[n+1]
u1[n+1]
v1[n+1]


 = F ·




x2[n]
x1[n]
u1[n]
v1[n]


 (2)

where,

F
�
=




1 0 0 −a21λ
a12 1 0 −a12a21λ
a12 1 1 −(1+a12a21)λ
a12 1 1 1−(2+a12a21)λ


 . (3)

The z–transform of the free evolution of the system
state is given by:



X2(z)
X1(z)
U1(z)
V1(z)


=z(zI−F )−1·




x2[0]
x1[0]
u1[0]
v1[0]


=

1
P (z)




A(z)
B(z)
C(z)
D(z)


 (4)

where P(z) = z4+[(2 + a12a21)λ − 4]z3+(6 − 5λ)z2+
+4(λ− 1)z−λ+1 is the characteristic polynomial of
the system and A(z), B(z), C(z), D(z) are polyno-
mials depending on the initial conditions x1[0], x2[0],
u1[0], v1[0]. The general expressions for A(z), B(z),
C(z), D(z) are very involved and do not add insight
into the system, so that they are not reported in this
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Fig. 5. Equivalent block diagram of the modulator–
resonator. The 1–bit quantizer is modeled by the time–
varying gain λ. The system initial conditions influence
only the coefficients of D(z), that is the amplitudes of
the equivalent system input modes.
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Fig. 6. Root locus of the resonator–modulator equi-
valent circuit when the generated sinusoid has a 22 kHz
frequency. In (a) the full root locus is shown, while in
(b) a zoomed portion of (a) is plotted around z = (1,0).

paper. If the z–transform of the oscillator output is
examined, it results that:

Y (z)
�
= λV1(z) =

λD(z)
P (z)

=
D(z)
N(z)

· λG(z)
1 + λG(z)

(5)

where:

D(z)
�
= v1[0]z

4+(a12x2[0]−3v1 [0])z
3+3v1[0]z

2−v1[0]z,(6)

N(z)
�
= (2+ a12a21)z

3 − 5z2+4z − 1, (7)

G(z)
�
=

N(z)

(z− 1)4 . (8)

It can easily be shown that (5) is the algebraic
expression corresponding to the parametric digital
system reported in Fig. 5. Note that the particular
expression of D(z) reported in (6) has been obtained
from (4) by assuming u1[0] = 0.0 and v1[0] = 0.0,
as stated in section II. Of course, the system
stability is related to the position of the system
poles on the complex plane. Such positions can be
graphically represented as a function of λ through
the root locus technique [8]. If the amplitudes of
the quantizer input signals are chosen so that all
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Fig. 7. Block diagram of the modified ∆–Σ modulator–
resonator. Circuit stabilization is achieved through the 2
soft limiters highlighted in grey.
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Fig. 8. Time waveform of x1[·] at a frequency of 22 kHz.
Due to the insertion of soft limiters, the waveform does
not diverge after 20 minutes.

poles lie inside the unit circle, the whole circuit will
be asymptotically stable [9]. Intersection points
between the root locus and the unit circle imply
the existence of limit cycles. The fundamental
radian frequency of the self–generated waveform is
given by the angle of these intersection points in
polar coordinates. As an example, in Fig. 6(a) it
is shown the root locus of the resonating system
when the oscillation frequency is set at 22 kHz. In
Fig. 6(b) it is plotted an enlarged view of the same
root locus near the point z = (1, 0). In order to
validate the model employed to describe the system,
several values of the quantizer gain deriving from a
simulation of the circuit in Fig. 1 are superimposed
(dotted lines) to the analytic root locus (continuous
lines) of the equivalent circuit shown in Fig. 5.
The unstable behavior of the oscillator is clearly
highlighted by the pattern shown in Fig. 6(b). In
fact, the time–varying poles associated with the
oscillating modes tend to move outside the unit
circle when λ decreases (i.e. when the amplitude
of the within loop signal increases). Unfortunately,
the chaotic sequence of gain values in the equivalent
circuit makes it difficult to predict exactly when the
failure will occur. Nevertheless, since the root locus
of the system shows the same pattern regardless of
self–generated frequency of the sinusoid, the limit
cycle is always critically stable. This is confirmed
by the fact that, increasing x2[0] beyond a certain
threshold, the digital circuit saturates even at 5 kHz
or less. To avoid the failure of the system, a simple
solution is illustrated in Fig. 7. By inserting 2 soft
limiters inside 2 Lossless Discrete Integrators, it is

possible to bound λ, thus preventing the saturation
of the oscillator. In Fig. 8 the last 2 · 103 samples
of x1[·] are plotted, by assuming the same initial
conditions as those related to the waveform shown
in Fig. 2. Values a12, a21 are chosen so that the
self–generated sinusoid frequency is equal to 22 kHz.
Other simulations, performed for several frequency
values, did not evidence any system malfunction.
However, this increase in stability is traded for a
reduction in the quality of the generated harmonic
signal.

IV. Conclusions

The correct operation of ∆–Σ resonator–
modulators depends on the stability of the self–
generated limit cycles. In this paper, by modeling
the 1–bit quantizer as a gain, it has been applied
the root locus technique to assess the stability of an
oscillator based on a second–order ∆–Σ topology.
From such an analysis it emerges that even if, under
some conditions, an oscillation can sustain indef-
initely, the modulator–resonator shown in Fig. 1
is intrinsically unstable because of the influence of
the 1–bit quantizer gain on the poles of the system.
Nevertheless, by inserting properly two soft limiters
inside the loop, the sinusoidal limit cycle can be
stabilized.
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