
MATLAB Toolboxes for A/D Converters Characterization

F. Adamo, F. Attivissimo and N. Giaquinto

Laboratory for Electric and Electronic Measurements
Department of Electrics and Electronics (DEE) – Polytechnic of Bari

Via E. Orabona 4, 70125 Bari - Italy
Phone: +39 080 5963318 Fax +39 080 5963410

e-mail: [adamo, attivissimo, giaquinto]@deemis06.poliba.it

I INTRODUCTION AND MOTIVATIONS
The considerable progress achieved both in the

fields of the electronic technologies and digital signal
processing methods is modifying the idea of measuring
and measurement devices and the concepts of auto-
diagnosis, self-testing and auto-calibration, bringing to a
new concept of measuring instrumentation. This
evolution leaves the classical viewpoint of the device
devoted to the measure of a single quantity towards the
idea of a computerized data-processing system which
acquires a large amount of data by which it is possible to
find information necessary to determine the desired
quantities.

With these aims, the employment of the computer
and the optimization of signal-processing techniques
represent the correct approach to obtain a drastic
reduction of costs and an increasing flexibility in
dedicated applications. With a view to obtain higher
performance in terms of accuracy, flexibility and speed
in estimating the variables of interest it is fundamental to
qualify the uncertainty of the analog-to-digital (A/D)
converters, data acquisition plug-in boards and, in
general, instruments and systems based on digital
recording of waveforms must be characterized.

A lot of works and documents deal with this matter,
but many limitations must still be overcome; even the
most authoritative technical document about this field
([1]-[2]) give a wealth of useful definitions, test methods
and mathematical analyses, but do not produce a
complete qualification of the A/D converter.

Besides the scientific literature abounds of test
methods that analyze particular effects or error
phenomena in digital recorders and it is not uncommon
to run into puzzling questions and even contradictions
when trying to arrange them together. Finally, we can
assert that a complete behavioral model which takes into
account all error phenomena of A/D converters simply
cannot be found.

With these aims, it is necessary the use of a
common and univocal standard framework to analog-to-
digital converters test; this solution, as stressed by some

researchers ([3]-[4]), would be very profitable and
desirable.

The purpose described above requires the choice of
a suitable programming language which must be very
usual, computationally powerful and user-friendly; even
if many other software package are available, the
MATLAB program seems a very favourable choice
([3]).

II GPIB4MATLAB & NIDAQ4MATLAB
TOOLBOXES: AN OVERVIEW
The toolboxes presented here by the authors, named

GPIB4Matlab and NIDAQ4Matlab, may represent a
common platform that can permit fast and simple
implementation of all the tests and the algorithms
described in the Standard or proposed by the researchers
around the world.

Particularly they have already permitted various
metrological characterization of different digital devices:
A/D converters, digital boards, computerized data-
processing system and so on. Moreover they can be used
to easily control both a large variety of Automatic Test
Equipment (ATE) and Data acquisition (DAQ) boards.

The platform used to produce this framework was a
desktop PC with Windows 98 operating system so that a
simple and user-friendly access to ISA/PCI bus devices,
PXI systems and all instruments with a GPIB interface is
possible.

The fundamental characteristics of the toolboxes
proposed are:

• simple and efficient software structure (see figures 1
and 2);

• every function returns a clear and complete status
indicator (a MATLAB's structure) of the performed
operation; the data reported in this structure permits
to search and apply the necessary corrections to the
procedure. For example, the following lines show
what is the content of this structure when we call the
NIDAQ4Matlab's function DAQ_Rate:

» [status, timebase, sampleInterval,
actRate] = DAQ_Rate(1035)

status = Sender: 'DAQ_Rate'
 Code: 0
 Name: 'noError'
 Description: 'Function successfully
executed.'

timebase = 1
sampleInterval = 966
actRate = 1.0352e+003

To be clear, the function DAQ_Rate returns
some parameters required to configure and
start any DAQ procedure.

• proper operation over many MATLAB's
versions (starting from 4.0);

• their use is immediate and do not require any
additional programming skills to the user
different than the simple ones necessary to
implement ordinary algorithms;

• it is possible (and simple) to extend the actual
implemented functionalities; to do this only
basics C language programming skills are
required;

• the project can be converted in an Open Source
form and every researcher can contribute to its
advance.

Fig. 1 - GPIB4Matlab block diagram.

Obviously there are also many aspects of these
toolboxes that can limit their applicability especially
with respect to the commercially available counterparts
(i.e. the MathWorks' Data Acquisition Toolbox and

Instrument Control Toolbox); the three main
drawbacks are:

• They are not commercial products and,
consequently, they do not have a guaranteed
support;

• They (at the moment) are not provided of a printed
manual; there is only a complete on-line help in the
typical style of MATLAB's functions;

• They are not intended to be interoperable with
DAQ and GPIB hardware different than National
Instruments' products. These toolboxes were
originally developed to respond to precise research
needs of the authors and when the MathWorks'
products were not available yet; at that time (2nd

semester 1999) the DAQ devices and GPIB
controllers hardware available in the authors'
laboratory were only provided by National
Instruments.

III GPIB4MATLAB: SOME DETAILS
The software structure of GPIB4Matlab is depicted

in Fig. 1. From this figure it follows the great simplicity
of the implementation and, consequently, the run-time
effectiveness of the toolbox.

The careful implementation of all of the functions
of NI's GPIB API (Application Programming Interface,
i.e. the main software interface between user's
applications and the underlying hardware) has permitted
the use of GPIB4Matlab to program and control various
stand alone instruments with a GPIB interface as well as
more complex ATE systems composed of various
instruments connected between them and at a common
GPIB backbone or even connected to an Ethernet LAN
with a proper protocol converter.

As it appear from the Fig. 1, the data exchange
between the MATLAB's workspace and the instruments
connected to the GPIB bus can occur in three different
(and totally mixable) ways:

1. we can use a direct call to the mexFuncton
GPIB4Matlab.dll (a Windows' dynamic linking
library compiled according to the MathWorks'
specifications), which is also the main component of
GPIB4Matlab;

2. we can call one of the functions contained in the
interfacing functions block, all of which are m-files
with a very simple structure and the same name of
the corresponding NI's GPIB function; the only
purpose of these functions is to simplify the draft of
the program code. Moreover the similarities
between the MATLAB's instruction set and program
structures with that of the C language, permits an
easy translation of many useful example code
enclosed to the NI's GPIB products. This process is

simplified by the availability of a MAT file
incorporating all of the NI-GPIB predefined
constants.

3. we can use the functions contained in the Utilities
block. In this block there are many useful functions
(e.g. there is a function to initialise the data
exchange with an instrument, a function to send a
query or a command to a previously initialised
instrument, etc.). There are also some useful
functions that may be used to send commands and
queries directly to the instruments from the
MATLAB's command line without the need of any
other preliminary initialisation; with these functions
it is possible to program and query the instruments
interactively from the command line.
As an example of the great flexibility achievable
with the use of these functions, the following is the
command we can use to identify an IEEE488.2
compliant GPIB instrument:

» [status, id] =
DirectQuery_GPIB_Instrument(0, 1, 0,
'*IDN?', T3s, 1, 0, 'char')

With the previous command we obtain the
instrument's identifier directly in a string in the
MATLAB's workspace (note that T3s is one of the
constant defined by NI for its GPIB products and is
used to instruct the appropriate GPIB function to
wait for the answer for a maximum of three
seconds). Obviously we can use the same syntax to
query the instrument about any other internal
parameter accessible by an instruction of its own
set. As an example this is the query we can use with
a LeCroy's LT262 digital oscilloscope to obtain the
vertical offset of its first channel:

Fig. 2 - NIDAQ4Matlab block diagram

» [status, C1_Vo] =
DirectQuery_GPIB_Instrument(0, 1, 0,
'C1:VERTICAL_OFFSET?', T3s, 1, 0, 'char',
'str2double')

In this case the variable C1_Vo contains the value of
the required offset directly as a double data type
number, and any other type cast is unnecessary; all
the work is done in the background by
DirectQuery_GPIB_Instrument.

IV NIDAQ4MATLAB: SOME DETAILS
As it appear at a first glance, the software structure

of NIDAQ4Matlab (Fig. 2) is almost identical to that of
GPIB4Matlab; obviously there are only formal analogies
between these two products: the code on which they are
based is completely different.

In this case the NIDAQ4Matlab's functions create
an interface layer between the NIDAQ's API (NIDAQ-
32.DLL dynamic linking library) and the MATLAB's
workspace.

Once again, as in the case of GPIB4Matlab, the
similarities between the MATLAB's instruction set and
that of the C language permits the almost immediate
translation of many useful example code available with
NI's DAQ products.

Obviously the maximum flexibility reached when
one use the powerful functionalities offered by many
MATLAB's advanced toolboxes in conjunction with
specific functions of the NI's DAQ products "imported"
in MATLAB thanks to NIDAQ4Matlab.

For example, the implementation of FIR/IIR digital
filtering applications with filters designed by MATLAB
under user control, with sampling frequencies up to 100
kHz and data block sizes down to 4096 samples/block
has been simple and has produced the results in real time
thanks to the Double Buffering capabilities offered by
NI's DAQ API.

The flexibility achievable with NIDAQ4Matlab
(often in conjunction with GPIB4Matlab) has been
experimented in almost two years of applied research of
the authors in the field of dynamic characterization of
ADCs; excluding some (absolutely marginal)
adjustments, there was not the need for any modification
of the software structure of the two toolboxes.

V NIDAQ4MATLAB & GPIB4MATLAB
VS. MATHWORKS' PRODUCTS
The MATLAB Toolboxes presented here are

substantially different (in many aspects) from their
commercially available counterparts from MatWorks
Inc. (Instrument Control Toolbox [5] and Data
Acquisition Toolbox [6]).

Obviously there are many features of the latter that
make them highly sophisticated products; one of these

features is the support offered to different hardware
products (currently the whole range of National
Instruments' DAQ and GPIB products, some products
from Agilent Technologies and the standard audio
boards for PC/Windows platform).

However what seems to be only an advantage could
become a serious problem when these toolboxes must be
used to implement some complex algorithm that require
the use of some advanced and specific functionality of
an hardware product; in fact the homogeneity imposed
by the MathWork's toolboxes in the access procedures
can easily cause the loss of control over these specific
functionalities. As an example, we can see ([6]) that the
user of a NI's multifunctional DAQ product does not
have access to the digital counters of the board because
this is a functionality not supported by all of the
manufacturers.

The solution proposed by MathWorks to this kind
of problem as well as to the problem of extension of
support to hardware from others OEMs (i.e. the Data
Acquisition Toolbox Adaptor Kit), in the author's
opinion, does not help the majority of researcher and
scientists involved in the Measurements field, simply
because their use requires advanced programming skills
(operating knowledge of C++, of Microsoft's COM
architecture and of the Active Template Library).

The toolboxes proposed here, on the contrary, are
based on an open source code, very simple and easily
extendable; only simple C language basics skills are
required. It is worth to underline that, besides these very
important characteristics, one other major advantage of
these toolboxes over the corresponding ones proposed
by the MathWorks Inc., is that they can be installed and

correctly used with almost all versions of MATLAB,
starting from 4.0 and ending to the current version (6.1).

VI CONCLUSIONS
Two originally and independently developed

MATLAB toolboxes dedicated to the control of GPIB
instrumentation and data acquisition hardware have been
presented. They can be two useful tools for all the
scientists involved in the Measurements field and aiming
to obtain direct access to the measurement hardware
from the MATLAB workspace.

They have some significant advantage over the
commercially available counterparts from MathWorks
but also some drawbacks.

VII REFERENCES
[1] IEEE Standard 1057 for Digitizing Waveform

Recorders, Dec. 1994.
[2] IEEE Standard 1241 for Terminology and Test

Methods for Analog-to-Digital Converters, Draft,
May 1999.

[3] J. Markus, I. Kollar, Standard Framework for
IEEE-STD-1241 in MATLAB, Proceedings of
IMTC/01 Conference, Budapest, May 2001,
Hungary, pp. 1847-1852.

[4] J. J. Blair, Sine-fitting software for IEEE standard
1057 and 1241, Proceedings of IMTC/99
Conference, Venice, May 1999, Italy, pp.1504-
1506.

[5] MathWorks Inc., Instrument Control Toolbox
User's Guide
http://www.mathworks.com/products/instrument

[6] MathWorks Inc., Data Acquisition Toolbox User's
Guide
http://www.mathworks.com/products/daq

