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Abstract: For the dynamic calibration of torque 

transducers, a model of the transducer and an extended 

model of the mounted transducer with the measuring device 

have been developed. The dynamic behaviour of a torque 

transducer is described by model parameters. This paper 

describes the model with the known and unknown 

parameters and how the calibration measurements are going 

to be carried out. The principle for the identification of the 

transducer’s model parameters from measurement data is 

described using a least squares approach. 
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1.  INTRODUCTION 

Research in the field of the dynamic calibration of torque 

transducers is being carried out in the context of the 

European Metrology Research Programme (EMRP) Joint 

Research Project IND09 “Traceable Dynamic Measurement 

of Mechanical Quantities” [1]. An existing prototype 

measuring device [2] was modernised and extended, and a 

model-based description of the dynamic behaviour of torque 

transducers was developed [3]. For future dynamic torque 

calibrations, it will be necessary to be able to identify those 

model parameters of a transducer to be calibrated from 

measurement data. 

2.  MODEL 

The model of the torque transducer is linear and time 

invariant (LTI) and consists of two mass moment of inertia 

elements connected by a torsional spring and a damper in 

parallel.  

 Torque transducers are always coupled on both ends to 

their mechanical environment, which may have influence on 

the transducer’s dynamic behaviour. To be able to include 

these effects in the model-based description of the dynamic 

behaviour of the transducer, it was necessary to extend the 

model of the transducer to a model of the mounted 

transducer with the dynamic torque measuring device (i.e. 

the mechanical environment in case of a calibration).  

 

 

This extended model represents the physical components 

of the measuring device and of the transducer under test and 

assumes LTI behaviour as well (see Fig. 1). It consists of 

elements for the mass moment of inertia (MMOI), the 

torsional spring and the torsional damper. The equation of 

motion is described as an inhomogeneous system of 

ordinary differential equations:  

                     (1) 

In this equation   denotes the mass moment of inertia 

matrix,   denotes the damping matrix,   the stiffness matrix 

and   the angle vector and its derivative vectors (      ), 
respectively. The forced excitation is described by     
 

 

Figure 1: Model of the dynamic torque calibration device (marked 

in black) including the transducer under test (marked in red). 



 

 

For the described model as depicted in Fig. 1, the model 

approach leads to a mass moment of inertia matrix   of 

    

      
           
           
      

      (2a) 

a damping matrix   of 
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and the corresponding stiffness matrix   
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The angle vector and its derivative vectors          are 

given by 

    

  

  

  

  

       

   
   
   
   

       

   
   
   
   

    
(2d) 
(2e) 
(2f) 

The forced excitation of the rotational exciter is given by 

    

 
 
 
 

    (2g) 

3.  KNOWN AND UNKNOWN MODEL 

PARAMETERS 

To be able to identify the unknown model parameters of 

the torque transducer, it was necessary to identify the 

measuring device’s model parameters first. To this end, 

dedicated auxiliary measuring set-ups for the determination 

of the mass moment of inertia, of torsional stiffness [3] and 

of torsional damping [4] were developed. Based on the 

measurement results from these set-ups, the previously 

unknown model parameters of the dynamic torque calibra-

tion device have been determined.  

The extended model of the measuring device now con-

sists of a set of known model parameters, which represents 

the components of the measuring device, and of a set of 

unknown model parameters representing the transducer 

under test (see Table 1), which need to be identified. 

Table 1: Model parameters of the measuring device and of the 

device under test. 

 Known 

parameters of the 

measuring device  

Unknown 

parameters of 

the DUT 

MMOI                     
Torsional stiffness          

Damping          

4.  CALIBRATION MEASUREMENTS 

For the calibration measurement with a transducer under 

test, periodic sinusoidal excitation is generated by the 

rotational exciter with given frequencies. The transfer 

function of the measuring device depends on the device 

under test (see Fig. 2). The control of the excitation 

frequency and magnitude, including abort conditions and a 

predetermination of the frequency response of each set-up, 

is carried out by means of a closed-loop vibration controller. 

The chosen excitation frequencies are based on the 1/3 

octave series (for frequencies up to 125 Hz) or the 1/12 

octave series (above 125 Hz), respectively. The frequency 

range of excitation starts at 12.4 Hz and ends at 1 kHz. 

For the calibration, the angle of excitation at the top 

     , the rotational acceleration at the bottom        and 

the output of the transducer  D T    are acquired. A discrete 

Fourier transform (DFT) is calculated for the determination 

of the frequency, the magnitude and the phase of each signal.  

These values are input start values for the determination 

of the frequency   and the magnitude   by approximating a 

monofrequent sine function like 

                          (3) 

including a magnitude offset  , drift   and phase offset  .  

 

Figure 2: Frequency response of the measuring device with DUTs 

of different torsional stiffness and MMOI measured with random 

noise excitation. 

5.  PARAMETER IDENTIFICATION 

Mounting different devices under test with different 

properties (MMOI, torsional stiffness, or damping) will 

influence the frequency response of the measuring device 

(see Fig. 2). From this variability in the frequency response 

of the measuring device, the properties of the DUT will be 

identified. The output of the transducer      is assumed to 

be proportional to the difference      of the torsion angles 

at the top (    and at the bottom      of the transducer as 

 D T                                (4) 

because of the measurement principle (strain gauges) and 

the known linear behaviour. As the transducer under test is 

measuring the torque and not the angle difference, a 

proportionality factor   is introduced. Influences of the 



 

 

complementary conditioning amplifier will be compensated. 

Therefore, the amplifier will be calibrated dynamically first. 

For the parameter identification, all signals acquired are 

assumed to be harmonic. In this case we can assume the 

following relationship for the angle  , the angular 

velocity     and the angular acceleration    : 

                                          

                           

                                

(5) 

Here,   denotes the imaginary number       and   is the 

angular frequency       . 

 

 

 

 

The parameters of the DUT will be identified by 

analysing the output of the transducer and the mechanical 

input, which is measured as the angular accelerations   M 

and     at the top and at the bottom of the coupling elements 

(see Fig. 1). This leads to the following frequency response 

equations: 
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(6) 

These equations are based on the ordinary equation system 

of the model (Eqs.    , (   ,     ,     ,     ,     ,       
and contain the known model parameters of the measuring 

device, as well as the still unknown parameters of the DUT. 

For the input of the frequency response functions of Eq.    , the results from Eq.     lead to 

For  top     then follows 

with  

consisting only of the known model parameters of the measuring device. The expression for           is more complex, 

additionally to Eq.     we denote 

which is again not dependent on the DUTs parameters. With       and       we finally obtain 

Examining Eq.     , the simple enumerator and complex denominator suggest considering the inverse          
   instead: 

 

or alternatively from Eq.     

which shows the dependencies on the unknown parameters              .  
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To get a closer look into the structure of Eq. (13), we denote 

            
  

       

  

       
     

       
       

                  
    

(14) 

Then, using Eq.      leads to 

 

         
    

 

 
  

      
       

       

 
    
 

             
  
 
               

(15) 

expressing the partial linearity of the model for 

               . The same applies from Eq.     to 

        
   giving 

 

        
   

    
 

 
 

                  

 
  
 
 

 

                  
    

(16) 

which is partially linear for            as well.  

Assuming that       were known in Eq.      or     in 

Eq.      additionally to the known parameters of the 

measuring device, there would be closed form formulas for 

the estimation of the remaining parameters 

                Eq.      or            Eq.    ) by 

means of a linear least squares approach. These formulas 

would of course depend on          which has implications 

on the estimation procedure for all unknown model 

parameters (see Table 1).  

Instead of estimating the 5 parameters of Eq.      or the 

4 parameters of Eq.     , respectively, by a least squares 

approach in one nonlinear optimisation step, the parameters 

               may be replaced by closed form 

formulas, and a nonlinear minimisation over two 

dimensions          can be carried out. Consecutively, the 

estimates for                will be obtained from the 

closed form formulas, with the estimated values of        . 

6.  CONCLUSIONS 

The presented identification scheme for the model 

parameters is a necessary component for the dynamic 

calibration of torque transducers. The dynamic behaviour of 

torque transducers is described by a physical model. The 

model parameters of each transducer will be identified from 

measurement data acquired with the calibration. The model 

parameters of the measuring device have been determined 

prior to the measurement to be able to identify the 

parameters of the transducer’s model. 

 

 

 

 

For their identification, the angular acceleration at the 

top and at the bottom of the transducer under test, as well as 

the transducer’s output, will be analysed. Based on this input, 

a parameter identification based on the method of least 

squares is presented, and a two stage procedure utilizing the 

partial linearity of the model for a consecutive linear and 

nonlinear optimisation is described.  
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