Calibration of a force vector sensor with a multicomponent calibration system

collaborative research project of PTB together with:

Gassmann Testing and Metrology GmbH

encouraged by:

PTB: S. Lietz
Dr. R. Kumme
Dr. D. Röske
Dr. F. Tegtmeier

GTM: D. Schwind
U. Kolwinski
State of the Art

- Conventional precision force transducers measure forces only as scalar size.
- Transfer-standards for multi-component force and torque test stands do not exist.
- Nowadays multi-component force transducers have an uncertainty within a range of 0.5% and higher, they do not achieve the requirements of all customers in industry (tire development, aviation).
- No calibration procedures in deadweight force standard machines with lowest uncertainty in the realization of force exist.
Prototype of the new multi-component transducer

Constructive design of the prototype:

Axial force: 100 kN
Sideway forces: 10 kN
Torque: 500 Nm
Uncertainty: < 0.01%

Force vector sensor mounted in a force standard machine
Software of Force Vector Sensor Data Evaluation
Internal structure of the new multi-component transducer
Numeric Simulation of Force Vector Sensor

F=100 kN

F=10 kN
Field for use of multi-component transducers

tire test stands

tests in aviation industry

wheel load sensor
Field for use of multi-component transducers

first multi-component calibration facility accredited in DKD
Methods for generating force and moment vectors

a) additional equipment for force standard machines to generate sideways forces and moments

b) inclined mounting of the force transducer in dead weight machines generates combination of axial load and additional components

c) multi-component calibration device for generating arbitrary force and moment vectors
Methods for generating force and moment vectors

- **wedge**
- **load-frame for the 100-kN-FSM to generate sideway forces**
- **multi-component calibration device**
- **spherical calibration facility**
a) Additional equipment

frame for generating sideway forces which is clamped around the cross heads of the 100-kN-force-standard-machine
a) Additional equipment

Vertically and horizontally movable crosshead at the load frame with loading facilities
a) Additional equipment

Realization of sideway forces by a screw drive with a high precision force transducer or a pulley with a deadweight
b) Inclined mounting

Realization of sideway force by mounting the vector sensor on a wedge inside the FSM.

Disadvantages:
- uncertainties in centering
- no arbitrary angles

Solution:
Development of a so called spherical calibration body
b) spherical calibration body

- Only one cantering for measurement in different rotational positions
- Arbitrary angles
- Centre of the sensor is not moved by turning
b) spherical calibration body - optimisations

alignment aid

calibration body

cone bush
b) spherical calibration body - optimisations

Numerical simulation to analyse maximum stress at the maximum gear angle and to analyse the influence of the mounting boreholes.
c) multi-component calibration device

Realization of all directions of forces and moments and their arbitrary combination

But:
- Dead weight machines have lower uncertainties
- No direct tractability to the standards
Selection of the calibration method

For calibration of the force vector sensor the spherical calibration artefact method was chosen because of the low uncertainty achievable by using dead weight force standard machines.
CALIBRATION OF THE FORCE VECTOR SENSOR

\[f_i = \sum_{j=x}^{z} a_{ij} F_j \quad i = x, y, z \quad (a_{ij}) = A \]

\[
A = \begin{pmatrix}
0.34 & 5.2 \cdot 10^{-3} & 1.0 \cdot 10^{-4} \\
3.7 \cdot 10^{-3} & -0.34 & -1.2 \cdot 10^{-4} \\
-2.4 \cdot 10^{-5} & -2.1 \cdot 10^{-5} & 2.0 \cdot 10^{-2}
\end{pmatrix}
\]

\[F_i = \sum_{j=x}^{z} b_{ij} f_j \quad i = x, y, z \quad A^{-1} = (b_{ij}) \]

\[
A^{-1} = \begin{pmatrix}
3.0 & 4.6 \cdot 10^{-2} & -1.5 \cdot 10^{-2} \\
3.2 \cdot 10^{-2} & -3.0 & -1.8 \cdot 10^{-2} \\
3.5 \cdot 10^{-3} & -3.0 \cdot 10^{-3} & 49.9
\end{pmatrix}
\]
Components of Uncertainty, regarding side forces F_x and F_y and axial force F_z

<table>
<thead>
<tr>
<th>component</th>
<th>$u_i \rightarrow (F_x, F_y)$</th>
<th>$u_i \rightarrow (F_z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>alignment</td>
<td>$7 \cdot 10^{-4}$ mV/V</td>
<td>$4 \cdot 10^{-4}$ mV/V</td>
</tr>
<tr>
<td>digitizer</td>
<td></td>
<td>$5,2 \cdot 10^{-5}$ mV/V</td>
</tr>
<tr>
<td>hysteresis</td>
<td>$6 \cdot 10^{-3}$ mV/V</td>
<td>$5 \cdot 10^{-5}$ mV/V</td>
</tr>
<tr>
<td>creep</td>
<td></td>
<td>$4 \cdot 10^{-5}$ mV/V</td>
</tr>
<tr>
<td>inclination sensor</td>
<td></td>
<td>$4 \cdot 10^{-2}$°</td>
</tr>
<tr>
<td>response matrix</td>
<td>$8 \cdot 10^{-4}$ mV/V</td>
<td>$4 \cdot 10^{-8}$ mV/V</td>
</tr>
</tbody>
</table>
Uncertainty Model of the force vector sensor calibration
Uncertainty Result

<table>
<thead>
<tr>
<th>component</th>
<th>$\rightarrow (F_x, F_y)$</th>
<th>$\rightarrow (F_z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>alignment</td>
<td>$1 \cdot 10^{-4}$</td>
<td>$1 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>digitizer</td>
<td>$1,5 \cdot 10^{-5}$</td>
<td>$2,6 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>hysteresis</td>
<td>$1,8 \cdot 10^{-3}$</td>
<td>$1,5 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>creep</td>
<td>$1,2 \cdot 10^{-5}$</td>
<td>$2 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>inclination sensor</td>
<td>$7,2 \cdot 10^{-3}$</td>
<td>$8 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>response matrix</td>
<td>$2,4 \cdot 10^{-4}$</td>
<td>$9,9 \cdot 10^{-7}$</td>
</tr>
<tr>
<td>combined uncertainty</td>
<td>$7,4 \cdot 10^{-3}$ kN</td>
<td>$1,1 \cdot 10^{-4}$ kN</td>
</tr>
</tbody>
</table>
CONCLUSIONS

The results of investigation show that the new force vector sensor achieves lower uncertainties in multi-component force measurement. This will allow to use the sensor in precision measurements for instance as transfer standard for calibrating multi-component force measuring stands and for investigating parasitic effects in high precision force standard machines. As the sensor is also capable of measuring moments analogue methods for calibration will be developed so all six components of a force and moment vector can be measured with lower uncertainty.