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Abstract: 
The plastic recycling industry necessitates fast 

and reliable methods to recognize the different 
polymer types to improve the recycling capacity. In 
this contribution, the coupling of a miniaturized 
Near-Infrared (NIR) spectroscopy technique with a 
robust data analysis is presented. Comparison of 
multiple machine learning techniques, such as 
Support-Vector Machines (SVM), Fine Tree, 
Bagged Tree, and Ensemble Learning, and 
chemometric approaches, such as Principal 
Component Analysis (PCA) and Partial Least 
Squares – Discriminant Analysis (PLS -DA), were 
combined to provide a broad overview and a 
rational means for selecting the approach in 
analysing NIR data for plastic waste sorting. 
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1. INTRODUCTION

In the perspective of whole-system economic 
sustainability, the enormous volume of urban plastic 
waste and the constant increase in human plastic 
consumption require a high level of waste 
valorization. Global plastic production reached 367 
million tons in 2021, with Europe accounting for 
16% of the total [1]. 9% of plastic is recycled, 12% 
were incinerated, and 79% ended up in landfills or 
the natural environment [2]. In this scenario, a key 
role can be played by the recycling process. 
Recycling is a technique for plastic product end-of-
life waste management [3]. Basically, two types of 
recycling processes can be distinguished: 
mechanical and chemical process [4][5]. In both, 
sorting is the most critical stage in the recycling 
process, and this is true regardless of how effective 
the recycling program is [5][6]. The use of 
automated sorting equipment makes the process 
more efficient [7]. Usually, these devices rely on 

vibrational spectroscopic techniques [8][9][10][11] 
and camera systems for the polymer identification 
of clear and coloured products [12][13]. Other 
techniques are based on UV spectroscopy [14][15], 
X-ray [16], and hyperspectral imaging [17]. Over
the years, this strategy has increased the purity of
the output plastic, achieving a high percentage of
recyclates in the production of secondary materials.
However, these systems reach their limits with
mixed plastics that require additional sorting
elsewhere and can affect the quality of the recyclate
if not appropriately allocated. A positive cost-
benefit analysis is only possible if the separated
polymer fractions have a high purity grade and
satisfy the market demand for high-quality
recyclates. Therefore, post-consumer recycling
consists of many essential steps: collection, sorting,
cleaning, size reduction and separation, and/or
compatibilization to reduce polymer contamination
[3]. In this scenario, the prospect of combining a
well-established polymer identification technology
with a small, portable, low-cost, real-time
spectrometer for local and intermittent semi-
automatic sorting is highly desirable, accompanied
by robust data analysis [20]. In recent years,
chemometric analysis of non-destructive
spectroscopic data has been widely investigated as
an automated method for improving plastic sorting
systems. This improvement has been driven by the
need to reduce the environmental impact [21].
Recently, machine learning has attracted
considerable attention in plastic waste recognition
using spectroscopic techniques [22][23][24]. In this
study, we compared machine learning and
chemometric techniques for classifying plastic
waste data from a portable Near-Infrared (NIR)
spectrometer. Comparisons were made between
chemometric approaches, Principal Component
Analysis (PCA) and Partial Least Squares –
Discriminant Analysis (PLS-DA), and machine
learning techniques, Support-Vector Machines
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(SVM), Fine Tree, Bagged Tree, and Ensemble 
Learning. A comparison was also made in terms of 
preprocessing: traditional techniques, such as 
Standard Normal Variate (SNV) and Savitzky-
Golay derivatives were examined in contrast to 
feature reduction techniques, such as multiple 
Gaussian Curve Fit based on Radial Basis Functions 
(RBF). The predictive performances of the tested 
models were compared in terms of classification 
parameters, such as Non-Error Rate (NER) and 
Sensitivity (Sn) with the analysis of confusion 
matrices, providing a comprehensive overview and 
a rational means of selecting the approach for the 
analysis of NIR data for plastic waste sorting. 

2. MATERIALS AND METHODS

2.1. Samples Collection 
The first batch of plastic samples were collected 

in the Selection Division of the Montello SpA 
recovery and recycling plant (Bergamo, Italy), 
which accepts post-consumer plastic in the form of 
municipal waste for recycling. Subsequently, the 
dataset was expanded to include new samples from 
municipal waste collected before ending up in 
landfills. A total of 325 samples from a variety of 
polymer classes were used in this study. 
Specifically, the products studied were: 75 samples 
of poly(ethylene terephthalate) (PET), 100 samples 
of polyethylene (PE), 75 samples of polypropylene 
(PP), and 75 samples of poly(styrene) (PS). The 
assortment included bottles, containers, and 
packaging of various sizes, shapes, and colours. 

2.2. NIR Analysis 
Plastic samples were analyzed using the 

MicroNIR On-site (Viavi Solutions Inc., CA, 
United States) in reflectance mode without 
pretreatment of the samples. The instrument is a 
palm-sized, portable spectrometer weighing 
approximately 250 g and measuring less than 200 
mm in length and 50 mm in diameter. Control 
settings for spectral data acquisition were set to 10 
milliseconds integration time and 50 scans, 
resulting in a short measurement time of 0.25 
seconds. A point-and-shoot technique was used to 
perform 5 replicates for each sample to reduce the 
effects caused by sample non-uniformity. A total of 
1625 spectra were acquired, and acquisition was 
performed using MicroNIRTM Pro v3.0 software 
(Viavi Solutions Inc., CA, United States). 

2.3. Spectral Pretreatment and chemometrics 
Preprocessing of NIR spectral data has become 

an essential aspect of chemometric modelling. The 
goal of preprocessing is to eliminate physical events 
from the spectra to improve subsequent multivariate 
regression, classification model, or exploratory 
analysis [25]. In this study, the spectra were 

retrieved in a single matrix of 1625 x 125 (samples 
x wavenumbers) and several preprocessing methods 
were applied. The best results were obtained using 
the Savitzky-Golay second derivative method with 
seven data points and a second order polynomial 
followed by a standard normal variate (SNV). In 
addition, normalization was performed by mean 
centering. Different chemometric methods were 
used for the correct evaluation of the data of all 
analyzed samples. The first phase was an 
exploratory analysis by PCA to investigate the data 
structure. PCA was performed on 1625 NIR spectra 
from all polymer classes. Then, PLS-DA was 
applied as a supervised pattern recognition tool to 
separate the different commodities. Prior to using 
PLS-DA, data were split into a training set and a test 
set using a MATLAB proprietary function. The 
process was repeated 500 times, generating a 
different training and test set each time (75% of the 
samples belonged to the training set and 25% to the 
test set). All chemometric analyses were performed 
with MATLAB 2021b (The MathWorks, Inc, 
Natick, MA, USA) using the PLS-Toolbox 
(Eigenvector Research, Inc. Manson, Washington, 
USA). 

2.4. Machine Learning 
Various machine learning algorithms were 

applied for classification purposes. Support Vector 
Machine (SVM), Fine Tree, Ensemble Learning, 
and Bagged Tree In addition, a likelihood-based 
aggregation procedure (here called Combo) was 
used to integrate the data into a single predictor, and 
the same procedure was applied with a Monte Carlo 
Method (MCM) to make a perturbation on raw data, 
to improve the generalization performance. The 
chosen hyperparameters are the following: for Fine 
Tree Gini's diversity index (gdi) was used as split 
criterion with 100 maximum number of splits; SVM 
was performed with a linear kernel function with 
kernel scale equal to 3. Lastly, Ensemble Learning 
was performed with the Bagged Tree method with 
30 cycles of learning. To test the reliability of the 
system, 200 random extractions were performed for 
splitting the training and testing set. Again, 75% of 
the samples were used for training and the rest for 
testing. Machine learning methods were performed 
on the raw data after applying the variable reduction 
technique based on multiple Gaussian Curve Fit 
with Radial Basis Functions (RBF) and combining 
raw and pre-processed data. All calculations were 
performed using MATLAB and Statistics Toolbox 
release 2021b (The MathWorks, Inc, Natick, MA, 
USA). Automation of the procedure was 
implemented using MATLAB functions created in-
house.  
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3. RESULTS AND DISCUSSION

3.1. Principal Component Analysis 
The PCA calculation was performed after the 

preprocessing described above for the entire 
spectral range. For data structure analysis, PCA is a 
useful chemometric method. The goal of PCA is to 
extract the information stored in many variables into 
a smaller number of variables, called Principal 
Components [26]. Figure 1 shows the score plot of 
the first two components (73.88 of the total 
explained variability), in which a clear separation 
between the polymer classes can be seen. Along 
PC1 PET is distinguished from the other 
commodities. PET samples show very negative 
score values, while the other samples show positive 
score values. On the other hand, along PC2, PS is 
clearly separated from the other plastics.  

Figure 1: Results of PCA performed with spectral data of 
different commodities. The score plot of PC1 vs PC2 is 
presented. 

A clear separation between PP and PE can be 
noticed in the score plot of PC1 vs PC3 in Figure 2. 
PC3 accounts for 15.83% of the total information 
and explains the difference of PP from the other 
class of polymers.  

Figure 2: Results of PCA performed with spectral data of 
different commodities. The score plot of PC1 vs PC3 is 
presented. 

3.2. Partial Least Squares Discriminant 
Analysis 

Following the exploratory PCA analysis, a 
supervised classification technique was used to 
distinguish the different plastic groups. In PLS-DA, 
a classification objective is added to the well-known 
PLS regression technique. The response variable is 
categorical and reflects the class to which the 
statistical units belong. PLS-DA returns the 
prediction as a vector with values between 0 and 1 
and a length equal to the number of classes in the 
predictor variables [27][28]. Each time PLS-DA 
was performed, the parameters such as NER and 
sensitivity were calculated in fitting, in cross-
validation (CV), and for the test set. The cross-
validation procedure was based on venetian blind 
approach with 5 groups. CV was also used to 
determine the optimal number of Latent Variables 
(LVs) for each PLS-DA model. Figure 3 shows all 
sensitivities for each class, calculated for training 
set, CV and for test set. The values are close to 1, 
indicating a very high classification performance. 
Moreover, the results are very balanced between 
training, CV, and test set; therefore, overfitting is 
completely avoided, and the model can be 
considered reliable and stable.  
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Figure 3: PLS-DA Model. Class sensitivities (Sn) 
calculated for training set, in cross-validation and for test 
set. 

Table 1 shows NER defined as mean of class 
sensitivity [29], calculated for the training set, 
cross-validation set and test set. Overall, 99% of the 
samples were correctly classified for each of the 500 
iterations. 
Table 1: PLS-DA Model. Non-Error Rate calculated for 
training set, in CV and for test set. 

NER 
Training 0.99 
CV 0.99 
Test 0.99 

3.3. Machine Learning 
Due to the complexity and the large number of 

results, for the machine learning analysis the 
classification parameters are presented only for the 
test set. Figure 4 shows the NER of the classes for 
each computed model and for each treatment of the 
data. It is noticeable that the models run on raw data 
have the worst performances. The NER ranges from 
0.74 (Fine Tree) to 0.9 (SVM), indicating a high 
variability in the results. For raw data only SVM can 
be considered as a satisfactory model for pattern 
recognition. Lower variability in the results is 
observed for pretreated data and for a mixture of 
pretreated and raw data, where the NER ranges from 
0.96 to 0.99 and from 0.96 to 0.98, respectively. 
Thus, there is no difference in the results between 
preprocessed data and the combination of raw and 
pretreated data. These results confirm that feature 
reduction based on the Gaussian curve with RBF 
gives high performances for pattern recognition in 
machine learning analysis. 

Figure 4: Machine Learning. Comparison of the Non-
Error Rate (NER) calculated from the confusion matrices 
for each model. Results are presented for raw data, 
pretreated data, and the combination of raw and 
pretreated data. 

In conclusion, model performance is comparable 
between machine learning and multivariate analysis 
methods. After random extraction of training and 
test data repeated 500 and 200 times for 
chemometrics and machine learning, respectively, 
the NER calculated for the test set is above 0.95 for 
both methods. However, the use of chemometrics 
reduces the computational time, compared to the 
computationally intensive machine learning 
algorithms. 

4. SUMMARY

This contribution included a side-by-side 
comparison between conventional chemometric 
methods and machine learning algorithms for the 
classification of a dataset obtained from the study of 
plastic waste with a portable Near-Infrared (NIR) 
spectrometer. Multivariate methods such as 
Principal Component Analysis (PCA) and Partial 
Least Squares - Discriminant Analysis (PLS - DA) 
were investigated, as well as machine learning 
methods such as Support Vector Machines (SVM), 
Fine Tree, Bagged Tree and Ensemble Learning. 
Results were also compared in terms of data 
processing: signal preprocessing tools, SNV and 
Savitky-Golay derivatives were compared with 
feature reduction approaches such as Multiple 
Gaussian Curve Fit based on Radial Basis Functions 
(RBF). In addition, the machine learning algorithms 
were run on raw data, preprocessed data, and the 
combination of the two approaches. The results 
from PLS-DA showed very high performance for 
pattern recognition; in fact, the NER for the training 
set, in CV, and for the test set are all equal to 0.99. 
In contrast, for machine learning, the NER for raw 
data ranges from 0.74 for Fine Tree to 0.90 for 
SVM, indicating high variability in the results. The 
results for the preprocessed data show lower 
variability with NER value ranging from 0.96 to 
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0.99, which is also true for the combination of raw 
data and preprocessed data. This confirms that RBF-
based variable reduction is the most crucial point to 
improve classification performances. We can 
conclude that the multivariate and machine learning 
approaches produce comparable results in terms of 
model performance. The NER estimated for the test 
set is above 0.95 for both chemometrics and 
machine learning after randomly extracting the 
training and test data and repeating them 500 and 
200 times, respectively. On the other hand, 
chemometrics is characterised by a lower 
computation time compared to machine learning 
algorithms and it can therefore be considered more 
advantageous. 
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