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Abstract: 
Decisions in conformity assessment, especially in 

the testing, inspection and certification (TIC) sector 

are predominantly based on the measurement data. 

The digital transformation has started to impact the 

TIC sector. The quality of the data in big data 

analytics, is not always sufficiently addressed, 

especially in sectors with traditionally empirical 

approaches, as TIC. This contribution conducts a 

survey of possibilities for application of data science 

in the TIC decision making processes, based on 

conclusions with complementary usage of 

experimental “measurements” and the “data science”, 

with a case study in estimation of the instruments re-

calibration interval with data fusion approach. 
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1. INTRODUCTION INTO CLASSES OF 

DATA SCIENCE PROBLEMS IN TIC 

Many decisions in conformity assessment, 

especially in testing, inspection and certification 

(TIC) are based on measurement data. Measurements 

are vital in environmental protection, healthcare, 

industry, trade, energy sector etc. The digital 

transformation has started to create significant impact 

on the TIC sector. Data is becoming more important 

in all sectors, as huge amount of data is produced, 

stored, processed, and utilized for increasing number 

of applications. Big data analytics, artificial 

intelligence, machine learning, internet of things etc. 

are based on data, but the quality of the data is an 

issue not always properly addressed, especially in 

sectors with traditions based on empirical approaches, 

like the TIC. Poor data will produce poor models, 

incorrect results and finally wrong decisions. Data 

science is an interdisciplinary field that uses scientific 

methods, processes, algorithms and systems to extract 

knowledge and insights from noisy, structured 

and unstructured data, and apply knowledge from 

data across a broad range of applications [1, 2]. The 

revival of measurement and data science is caused by 

the revolution of sensory devices and the emerging 

data transmission, storage and processing capabilities 

available and variously deployed. Due to the huge 

amount of recorded information and the theoretical 

results of measurement and data science, numerous 

newly developed products are invented, and smart 

services and support are enabled. This contribution 

conducts a survey of the possibilities for application 

of the latest data science achievements in the TIC 

decision making processes, based on conclusions 

with complementary usage of “measurements” as 

completely experimental and the “data science” as 

methodology oriented towards modelling and 

simulation, combined with high complementarity and 

synergy, i.e. the data fusion approach. The 

contemporary scientific methodologies require 

experimental verification, whenever possible, for 

sustaining the theory validity. Experimental proof 

comprises a measure either quantitative or non-

quantitative, often called ‘qualitative’, of the 

observable quantities derived by means of 

measurement. The degree of consistency of different 

measurement results, gained by various independent 

experimenters or by the same experimenter at 

different times, is a measure of results reliability 

representing the observed quantity, considering that 

experimental knowledge is generally imperfect to 

some degree and the combination of observations are 

standard and essential practices, [3]. 

Several classes of data science problems for which 

techniques might be developed and evaluated across 

different domains in the TIC sector, are [1]: 

 Detection -finding data of interest in given dataset.  

 Anomaly detection - identification of system 

states that force additional pattern classes in a model. 

Outlier detection is associated with identifying 

potentially erroneous data items forcing changes in 

prediction models “influential observations”.  

 Cleaning - elimination of errors, omissions, and 

inconsistencies in data or across datasets.  

 Alignment - relating different instances of the 

same object [4], e.g., a word with the corresponding 

visual object, or time stamps associated with two 

different time series. Data alignment is frequently 

used for entity resolution, identifying common 

entities among different data sources. 

 Data fusion - different representations integration 

of the same real-world object, encoded in a well-

defined knowledge base of entity types [5].  
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 Identification and classification - attempt to 

determine, for each item of interest, the type or class 

to which the item belongs [6].  

 Regression - finding functional relationships 

between variables.  

 Prediction - estimation of a variable or multiple 

variables of interest at future times.  

 Structured prediction - tasks where the outputs are 

structured objects, rather than numeric values. A 

desirable technique to classify a variable in terms of 

a more complicated structure than producing discrete 

or real-number values. 

 Knowledge base construction - construction of a 

database with a predefined schema, based on any 

number of diverse inputs.  

 Density estimation - production of a probability 

density (distribution function), beside a label/value.  

 Joint inference - joint optimization of predictors 

for different sub-problems using constraints that 

enforce global consistency used for detection and 

cleaning for more accurate results.  

Data science involves ranking, clustering, and 

transcription (“structured prediction”), as in [7]. 

Additional classes of problems rely on algorithms and 

techniques that apply to raw data at an earlier “pre-

processing” stage. Different data processing may be 

employed if evaluation methodology is essential, [1].  

2. STATISTICAL PARADIGMS 

The adoption of the Guide to the Expression of 

Uncertainty in Measurement (GUM), [8] has led to an 

increasing need to include uncertainty statements in 

measurement results. The laboratory accreditation 

based on standards such as ISO 17025, [9] has 

accelerated the process. Recognizing that uncertainty 

statements are required for effective decision making, 

different laboratories, from national metrology 

institutes to commercial test laboratories, put 

considerable effort into analysis of measurement 

uncertainty using the GUM methods, [8, 10]. The 

methods for uncertainty assessment conducted in the 

TIC applications include the frequentist, Bayesian, 

and fiducial statistical paradigms, [11]. 

The first statistical paradigm, in which uncertainty 

can be probabilistically evaluated, is frequentist 

(based on statistical theory, referred as “classical” or 

“conventional”). Due to the nature of uncertainty in 

TIC, these methods must be adapted to obtain 

frequentist uncertainty intervals under realistic 

conditions. In most practical TIC settings, uncertainty 

intervals must consider both the uncertainty in 

quantities estimated using data and the uncertainty in 

quantities based on expert knowledge, i.e. data fusion. 

To obtain an uncertainty interval, the measurands that 

are not observed must typically be treated as random 

variables with probability distributions for their 

values, whereas measurands whose values can be 

estimated using statistical data are treated as unknown 

constants. The traditional frequentist procedures must 

be modified to attain the specified confidence level 

after averaging over the potential quantities values 

assessed by expert judgment [11].  

The second paradigm is called the Bayesian 

approach, [11], named after the fundamental theorem, 

which was proved by the Reverend Thomas Bayes in 

the mid-1700s. The analyst’s knowledge about the 

measurands is modeled as a set of random variables 

following a probability distribution in the joint 

parameter space. The theorem allows the probability 

distributions to be updated based on the observed data 

and the inter-relationships of the parameters defined 

by the function or equivalent statistical models. Then, 

one obtains a probability distribution describing one’s 

knowledge of measurand given the observed data. 

The third statistical paradigm is the fiducial 

approach, developed by R. A. Fisher in the 1930s [11]. 

The probability distribution, (fiducial distribution) for 

measurand conditional on the data, is obtained from 

the interrelationship of measurand and the input value 

described by the function and the distributional 

assumptions on the data used to estimate. 

3. DATA FUSION, DECISION-MAKING, 

AND RISK ANALYSIS IN TIC 

The ultimate idea underlying data fusion is to 

obtain greater quality information for a specific 

purpose by exploiting the synergy of data gathered 

from different sources. Data fusion is the process of 

combining data or information to estimate or predict 

entity states, [12]. Applied in many decision-making 

domains, as TIC, it encompasses classification and 

pattern recognition used to support decisions. In TIC 

it is crucial not only to fuse data obtained from 

multiple sensors, but also to assess threats and risk. 

Data fusion increases robustness and reliability and 

reduces the vulnerability of the system supporting the 

decision, allowing decision-making even in absence 

of malfunction of some sources of information. It 

provides a better and larger coverage of space and 

time, reduces ambiguity, as better information 

provides better discrimination between available 

hypotheses. Data fusion is based on experimental data 

output by sensing devices and on information 

obtained by other means (e.g. the user as a data source 

for a priori knowledge, experience, and model 

application). Fusion requires all data to have the same 

representation (e.g., numeric values in the same units, 

relative values). If data are heterogeneous, data 

alignment or data registration is imposed [12]. 

Measurements, as sensor output, form a signal more 

or less affected by noise whose reliability has to be 

verified (e.g. sensor malfunction, express corruption 

of sensors’ measured quantity, e.g. jamming). Data 
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filtering and data validation are two important tasks 

in a data fusion. Data fusion involves addressing: data 

from sources with different quality levels (e.g. 

different accuracy), non-independent data, too much 

information, leading to computational problems, and 

need to change the context of the observation (e.g. 

from time to frequency domain) or to extract features 

or attributes [12], as issues of data-processing type.  

As an illustration for application of data science in 

the TIC sector, one of the most relevant TIC decision-

making and risk-introducing issues will be further 

demonstrated - determination of the re-calibration 

period of the TIC measurement equipment. 

4. APPLICATION OF DATA FUSION FOR 

DETERMINING THE TIC INSTRUMENT 

RE-CALIBRATION PERIOD  

Determining re-calibration intervals is a problem 

of TIC sector entities using calibrated instruments in 

their activities. Most of the test equipment in today's 

inventories are multiparameter items or consist of 

individual single-parameter items. An item is stated 

to be out-of-tolerance if a single instrument parameter 

or item in a set, is found out of specifications. This is 

costly and introduces risks [13, 14]. Most of the 

published methods are of statistical nature and can 

correctly be applied only to large inventories of 

instruments, [15]. Due to the various performance of 

individual instruments and their different operation 

conditions, individual product reliability is difficult to 

predict. Longer calibration intervals have a higher 

consequence cost associated with a given standard, as 

more calibrations have been performed before it is re-

calibrated and found to be in- or out-of-tolerance. 

Consequence costs may include a reverse traceability 

analysis to identify the items that have been calibrated 

by the standard, an investigation of the impact on 

their performance given the magnitude of the 

standard’s out-of-tolerance, customer notification, 

suspension of accreditation, product recall and 

intangible factors like the TIC entity’s reputation. 

Here the emphasis is on determining the recalibration 

period of measuring instruments used by the TIC 

entities. The methodology for determining the 

recalibration interval will be validated in a case study 

on experimental calibration and check data of an 

electrical measuring instrument, by fusion of data 

from diverse sources (both experimental and a priori 

knowledge, experience, model application). Most of 

the standards according to which the TIC entities are 

accredited/certified require to have available, suitable 

and adequate facilities and equipment to permit all 

TIC activities to be carried out in a competent and 

safe manner, with the responsibility lying solely on 

the TIC entity. One of the most significant decisions 

regarding the calibration is “When and how often to 

do it?” Many factors influence the time interval 

between calibrations and should be taken into account 

by the TIC entity. The most important factors are: 

uncertainty of measurement required or declared by 

the laboratory, risk of a measuring instrument 

exceeding the limits of the maximum permissible 

error when in use, cost of necessary correction 

measures when it is found that the instrument was not 

appropriate over a long period of time, type of 

instrument, tendency to wear and drift, 

manufacturer’s recommendation, extent and severity 

of use, environmental conditions (climatic 

conditions, vibration, ionizing radiation, etc.), trend 

data obtained from previous calibration records, 

recorded history of maintenance and servicing, 

frequency of cross-checking against other reference 

standards/measuring devices, frequency and quality 

of intermediate checks in meantime, transportation 

arrangements and risk, and degree to which the 

personnel are trained [15]. The ILAC-G24 specifies 

the following methods, [15]: automatic adjustment or 

“staircase” (calendar-time), control chart (calendar-

time), “in-use” time, “in service” checking, or “black-

box” testing, and other statistical approaches. The 

statistical methods, i.e. by deploying data science, of 

an individual instrument or instrument type are of 

interest, especially combined with adequate software 

tools. According to Agilent Technologies®, prior to 

the introduction of a new product, [17] the 

responsible personnel set the initial recommended 

calibration interval. The reliable data is from at least 

three areas: data from similar products, data for the 

individual components used in the instrument, data on 

any subassemblies leveraged from existing mature 

products. The typical operating conditions and the 

results of the environmental testing performed on 

product prototypes are also considered [18]. Several 

methods for determining the calibration intervals are 

published, [13], [14]. Some models are based on the 

assumption that the calibration condition of the 

instrument can be traced by monitoring the drift of an 

observable parameter, [13]. The calibration intervals 

can be presented according to analysis by parameter 

variables data, analysis by parameter attributes data, 

instrument attributes data and by class instrument 

attributes data. Other method, such as an extension by 

providing a maximum likelihood estimation for the 

analysis of data characterized by unknown failure 

times, are given in [13], where the estimation method 

is using the exponential reliability function. An 

approach with a review of the instrument’s calibration 

history are presented in [14], calibration record 

indicates a history of remaining in tolerance, as it 

might be expected that the instrument might have a 

higher likelihood of remaining in tolerance, as a result 

an algorithm that has been developed calculates 

calibration intervals based on the condition received 

at calibration along with a historical weighting. A 
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method from variables data are presented for 

determining calibration intervals for parameters 

whose value demonstrate time-drift with constant 

statistical variance. The method utilizes variables data 

in the analysis of the time-dependence of deviations 

between as-left and as-found values from calibration. 

The deviations are from the difference between a 

parameter's as-found value at a given calibration and 

as-left value prior to calibration [14].  

4.1. A model for determination of a re-calibration 

interval 

Table 1: Values of parameters as multipliers 

Parameter  Value  

X “In Tolerance”  1 

“Out of Tolerance”  0.8 

< 1x the tolerance band 

“Out of Tolerance”  0.6 

> 1x the tolerance band,< 2x the tolerance band 

“Out of Tolerance”   0.4 

> 2x the tolerance band,< 4x the tolerance band 

“Out of Tolerance”   0.3 

> 4x the tolerance band,< 4x the tolerance band 

Y=ΣYi Y1 number of in-service checks between 

calibrations  

 

1 time 0.1 

< 5 times 0.3 

< 10 times 0.4 

> 10 times 0.5 

Y2 measured value  
 

no difference (<3%) 0.5 

difference < 20% 0.4 

difference > 20% 0.1 

Z=ΣZi Z1 Frequency of usage 
 

dayly 0.1 

montly 0.5 

yearly 0.7 

Z2 Habit of usage 
 

used with caution in laboratory conditions  0.3 

used with caution in tendency to wear and 

drift 

0.2 

use without special attention in terms of 

events 

0.1 

U=ΣUi U1 Cost of calibration  
 

Small 0 

Medium 0.3 

Large 0.5 

U2 Cost of necessary correction 

measurement 

 

< 0.5 x cost of calibration 0.5 

< 1 x cost of calibration 0.1 

> 1 x cost of calibration 0 

V The operator is trained to handle the 

instrument and knows the measured items 

1 

The operator is trained to handle the 

instrument, but imperfectly acquainted 

with the measured items 

0.5 

W Service performed between previous and 

last calibration 

0.5 

No service performed between previous 

and last calibration 

1 

Based on the previous discussions and survey, the 

following innovative data fusion model for 

determination of the re-calibration period is proposed 

W]   MS+V  OFH + U  CO + Z CFU 

+ Y IC + X  C + X  C +X  C +X  [C  ECI = NI 4321





  (1) 

where: 

NI - New Interval  

ECI - Established Calibration Interval  

C1 - Most recent calibration (0.2, modification of the 

simplified method) 

C2 - Most Previous Calibration (0.1, modification of 

the simplified method) 

C3 - Previous Calibration (0.08, modification of the 

simplified method) 

C4 - Predicted Value of Next Calibration (0.06, newly 

introduced parameter) 

IC - In-service check between calibrations (0.1, newly 

introduced parameter) 

CFU - Condition and Frequency of Use (0.2, newly 

introduced parameter) 

CO - Costs (0.1, newly introduced parameter) 

OFH -  Operator factor and habit (0.08, newly 

introduced parameter) 

MS - Maintain and service (0.08, newly introduced 

parameter) 

ECI can be specified depending on the experience 

with the stability of similar instruments, experience 

and recommendations. It will be the longest possible 

re-calibration period, leading to a conclusion that the 

method is more rigorous in comparison to the 

“simplified method”. The parameters as multipliers 

are given in Table 1. 

4.2. Method validation 

For proper application of the proposed model, a 

data base containing the historical data of previous 

calibrations must be created by the TIC entity. This is 

recommended to be applied after at least two 

performed calibrations. As case study for validation 

of the proposed method, a real data base with the 

calibration history of a digital multimeter used during 

process of inspections in a TIC body is adopted. The 

calibration values fluctuation should be observed in 

as many as possible measurement points, especially 

in points where changes are detected. Reasonable 

value for X is the smallest value that is obtained from 

all points. The expected value of the next calibration 

can be derived with a sophisticated algorithm, but for 

some TIC entities it is a complicated methodology. 

The proposed algorithm, using the least squares 

method, is a readily available and simplified tool. The 

in-service checks with another instrument must be 

performed in points where uncertainty of calibration 

is available for the both instruments. Quality 

management determines the extent of factors and 

habits of the staff, while the instrument operator 

specifies the frequency and conditions of use. 

Depending on the available history data and tracking 

behaviour of the instrument, the coefficients proposed 
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in the algorithm can be modified and customized for 

each instrument or group of instruments. 

As a case study implementing the proposed 

algorithm, the calibration periods of a METREL 

Eutotest XE MI 3102 tester is calculated. According 

to Metrel®, [17] regular 6-months or 1-year 

calibration of all measurement functions of the 

instrument is recommended. In Tables 2 and 3 the 

calibration history for the instrument in a single point 

of the current and voltage measurement ranges are 

given, respectively. Reference calibration value for 

the current is 10 A, while the voltage is 400 V. The 

measurement uncertainty is divided by a coverage 

factor as the calibration is performed in different 

laboratories at factor of coverage k=1.65 (for 

rectangular distribution at probability of 95%) and 

k=2 (for normal distribution at probability of 95%). 

Table 2: The calibration history in a single point of current 

measurement range of METREL Eurotest XE MI 3102  

t [month] I [A] 
Uncertainty 

[mA] 

0.00 9.98 0.020 

15.00 10.00 4.121 

36.80 10.01 14.545 

52.60 9.98 14.545 

72.90 10.00 0.015 

Table 3: The calibration history in a single point of voltage 

measurement range of METREL Eurotest XE MI 3102 

t  

[month] 

U  

[V] 

Uncertainy 

[V] 

0.00 399.00 0.42 

21.80 401.00 0.36 

37.66 401.00 0.36 

58.02 400.00 0.50 

 

The trend line for both areas is calculated without 

the inclusion of the last calibration value, which is 

used for verification of the model and it is: 

 1=R² 

399 +t 0.1448 t0.0024- = U 2 
               (2) 

 

𝐼 = −7 ∙ 10−7𝑡3 + 10−5𝑡2 + 0.0013𝑡 + 9.98 

𝑅2 = 1              (3) 

 

In Figures 1 and 2 the values of the function 

modeled including the last calibration, are shown. So 

the expected values are 9.85 A for current measuring 

range and 399.32 V for the voltage measurement 

range, and are in tolerance.  

In the Table 4 the experimental results of in-

service check measurements with two instruments, 

are displayed. The results are in limits of errors. 

 
Figure 1: The calibration history and expected value in a 

single point of current measurement range  

 
Figure 2: The calibration history and expected value in a 

single point of voltage measurement range 

Table 4: Experimental values of the last in-service check 

with other instrument  

Instument I [A] U [V] 

Metrel MI 3102 3.7 224 

Metrel MI 833 3.7 223 

 

Other values for the parameters in the algorithm 

are as follows:  

 

ECI = 24 months  

 

17.76 =  0.74  24  1]  0.08 + 1  0.08

 + 0  0.1 + 0.3  0.2 + 0.8  0.1+ 1  0.06 

+ 1  0.08 + 1  0.1 + 1  [0.2  24   W] MS +

 V OFH +  U CO +  ZCFU +  Y IC

 + X  C + X  C + X C + X [C  ECI = NI 4321











          (4) 

 

I = 410-08t4 - 510-06t3 + 0.0002t2 + 

+610-06t + 9.98

R² = 1

9.40
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10.20

10.40

10.60

0.00 20.00 40.00 60.00 80.00

I 
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]

t [month]
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U = 210-5t3 - 0.0035t2 + 0.1601t + 
399

R² = 1

395
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U
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V
]

t [month]
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Table 5 .: Multipliers used in the case study  
Parameter  Value  

X “In Tolerance”  1 

Y=ΣYi Y1 number of check between calibration 
 

< 5 times 0.3 

Y2 measured value  
 

no difference (3%) 0.5 

Z=ΣZi Z1 Frequency of usage 
 

dayly 0.1 

Z2 Habit of usage 
 

Used with caution in tendency to wear 

and drift 

0.2 

U=ΣUi U1 Coft of calibration  
 

Small 0 

U2 Cost of necessary correction 

measurement 

 

> 1 x cost of calibration 0 

V The operator is trained to handle the 

instrument and knows the measured 

items 

1 

W No service performed between previous 

and last calibration 

1 

The last calibration is not used in the prediction of the 

next value and is used as a validation point of the 

algorithm. The real calibration period (between the 

last two calibrations) is 20 months, while the 

predicted re-calibration period by the proposed 

algorithm is 18 months. The values obtained with the 

last calibration validate the method, and shorter value 

of the re-calibration interval is obtained which is on 

the safe side, which can be accepted as applicable. 

 

8. Conclusion 

The presented algorithm for predicting the period 

of re-calibration based on data fusion concept is 

simple, containing a lot of data on factors influencing 

the stability of the instrument derived from diverse 

sources. It is easily applicable in every day routine of 

various TIC entities. This algorithm can reduce the 

management risk of the occurrence of errors. The 

experimental values applied in the case study validate 

and confirm the effectiveness of the proposed 

algorithm. Another advantage of this universal model 

is that it allows the variation of the coefficients and 

enables specialization for a group of instruments. The 

data fusion approach is highly adaptable for various 

decision making applications in the TIC sector. 
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