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Abstract: 
The Monte Carlo method was applied to PT schemes 

to investigate their efficiency. Probabilities that the 
computed z values are over 3 while the true value is less 
than 2 and that the computed z values are less than 2 
while the true values are over 3 are computed for a series 
of situations: number of participants from 5 to 30, various 
ratios of repeatability over reproducibility and number of 
test results per participant, introduction or not of outliers 
with k from 3 to 10. For each situation, the probabilities 
of detecting true outliers and to trigger false alerts are 
discussed. 
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1. INTRODUCTION

Proficiency tests (PT) are widely used to assess the 
performance of laboratories. Participating to such 
programs is required by ISO 17025 [1], which is the 
standard of reference for accreditation of laboratories. 
Reference standards for interlaboratory comparisons 
(ILC), ISO 5725-2 [2], ISO 13528 [3] and ISO 17043 
[4], define limits for computing the alerts, corresponding 
to theoretical risks of 5% and 0,3%.  

Note: [2] deals with ILC to assess test methods. [3] deals with 
ILC for PT of labs. [4] is the reference for accreditation of PT 
providers. Limits in [2] are intended to assure the reliability of 
the assessment. Limits in [3] and [4] are for proficiency 
checking of participants. [2] is referred here because it is the 
“historical one” and it is still widely used by PT providers, even 
if [3] is obviously better adapted to proficiency testing of labs. 

These risks are of α-type (risk to trigger a warning 
that should not). Another risk actually occurs, usually 
called β-type (risk not to trigger a warning when it 
should). However, even if this question is of main 
importance, this β-type risk is quite hard to compute, and 
for this reason, is almost always just ignored, including 
in the reference standards [2] and [3]. Everybody knows 
that an enough number of participants is necessary to 
ensure the efficiency of the PT, but there is no clear 
consensus of what should be “an enough number”. On 
the other hand, test methods for which there are very few 
potential participants to a PT are quite numerous. There 
is then no opportunity for them to get the advantages of a 
participation to a PT. This paper proposes to overcome 
the difficulty of computing the β-risk by using the Monte-
Carlo method and to provide a beginning of answer to the 
question: does it make sense or not to organise PTs with 
5 or 8 or 12 participants, especially when the number of 
potential participants is quite low? 

To do so, the following issues are dealt with: 
1. How α-type and β-type risks can be computed and

what hypotheses to do it were taken into account in the 
present study; 

2. What are the principles of the Monte-Carlo
method, in which conditions it can be used and how it 
was implemented in the present study; 

3. What is the impact of the use of robust statistics
that are usually used to avoid the deleterious impact of 
outlying results on the so-called assigned values; 

4. What is the impact of the number of test results by
each participant, with regard to interlaboratory and 
repeatability standard deviations. 

2. DESIGN OF EXPERIMENTS

2.1. Calculation of α-type and β-type risks  
Computing α-type and β-type risks requests to define 

underlying alternate hypotheses usually designated as H0 
and H1. α is the probability to reject the H0 hypothesis 
while it is actually true and β is the probability to reject 
the H1 hypothesis while it is actually true, as shown in 
Table 1. 

Table 1: α and β-risks with regard to H0 and H1 hypotheses 

H0 is true H1 is true 

H0 is accepted 
Right decision 

(p=1-α) 
Wrong decision 

(p=β)  

H1 is accepted 
Wrong decision 

(p=α) 
Right decision 

(p=1-β) 

The issue of α-type and β-type risks have been 
extensively discussed for a very long time because they 
address many practical decision problems, notably the 
assessment of conformity of products to specifications, 
see for example ISO 2859-1. In all cases: 

1. α and β-risks decrease when the available number
of test results increases; 

2. For a given number of test results, α-risk increases
when β-risk decreases, and vice-versa. 

In the context of PT organisation, the H0 hypothesis 
can be quite obviously defined as “The results of the 
participant belong to the general population of expected 
results”. In the same way, H1 can be defined as “The 
results of the participant belong to a [5] other than the one 
of the expected results”. 

It is needed then to define how conclusions about H0 
and H1 shall be carried out. The decision rules described 
in the reference standards [2] and [3], i.e. the calculations 
of z-scores obviously apply to H0. On the contrary, the 
distribution of H1 is not known (other populations of 
results than the expected one can practically be very 
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different ones, including gross errors, different types of 
deviations to the method, etc. …). One way to solve this 
problem is to construct “power curves” in function of 
parameters of the problem, and especially the number of 
results and the distance to H0. This principle was used to 
build up the design of experiments for this study.  

In details: 
1. We considered that the α-risk occurs when |zcalc|>3

and |ztrue|<2 (as recommended in [2] and [3]), and that the 
β-risk occurs when |zcalc|<2 and |ztrue|>3; 

2. We computed these α and β-risks on populations of
test results without any true outlier, i.e. to a whole 
Gaussian population of expected results. This implicitly 
includes 5% of corresponding z-scores outside the [-
2;+2] interval and 0,3% outside the [-3;+3] interval; 

3. We also computed the α and β-risks on populations
of test results including one true outlier with various z 
values from 3,5 to 10. These computations of α and β-
risks were carried out separately for the main population 
and for the outlier, enabling to check the impact of the 
outlier on both categories of participant results. 

It should be kept in mind that the computed β-risks 
fully depend on the definition of H1 (see here upper) and 
that other ways to define H1 would also make sense, 
leading to other meaningful values of β. 

To deal with the upper, we have built up a design of 
experiments pursuing the following goals: 

2.2. Impact of the number of participants 
[1] recommends that at least 12 participants are

present and [2] recommends not to use robust statistics 
when the number of participants is less than 18. On the 
other hand, our computations showed that α and β-risks 
do not significantly change when the number of 
participants goes over 30. We then did not investigate 
higher values and decided to compute the α and β-risks 
for a number of participants varying from 5 to 30. This 
enabled us to investigate areas that are not recommended 
by the standards. 

2.3. Principles of the Monte-Carlo method  
The Monte-Carlo methods are a large category of 

algorithms that use random numerical realisations of a 
given model. They are often used to solve mathematical 
or physical problems, difficult or impossible to solve by 
other methods. For a survey of the history and 
applications of the Monte-Carlo methods, see for 
example [6]. 

In our problem, using the Monte-Carlo methods 
enables us to create series of “true values” of test results 
that cannot be known in real life. In practice, we always 
know whether H0 and H1 are accepted or not (i.e. whether 
an alert was sent to the participant), but we can never 
know whether H0 and H1 are actually true or not. Using 
Monte-Carlo methods enables us to control at the same 
time for each series of random results whether H0 and H1 
are accepted or not and whether H0 and H1 are true or not. 
Having this whole information is necessary to compute 
both α and β-risks. 

However, using Monte-Carlo methods requests to use 
a model that reasonably fits the situations encountered in 
the real world. In this study, we used the model of 
ISO 5725-1 [7] widely used to cope with problems of 
precision of test results: 

𝑦 = 𝑚 + 𝐵 + 𝑒 . (1) 

where “m” is the general mean value, “B” is the bias 
of the lab and/or the method, and “e” is the random error. 

In this model, we used m=0, a Gaussian distribution 
with 0 as mean value and 1 as standard deviation for B 
and another Gaussian distribution with 0 as mean value 
and a varying sr as standard deviation for “e” (see at 2.5 
how sr was chosen). 

Using the Monte-Carlo methods also requests to use 
random inputs. Moreover, when correlations between 
them apply in real life, these correlations must be 
incorporated in the inputs of the computations. That can 
be a bit difficult to do properly. In our case, we can 
reasonably rule it out, assuming that there is no 
correlation between the results of the different 
participants and between the results of a same participant. 
As a matter of fact [3] requests PT providers to care about 
it (no collusion between participants), because it is a 
condition to ensure the validity of the statistical treatment. 

To assure the validity of the conclusions, the random 
series need to numerous enough, depending on many 
factors. In our study, we computed series of 500000 to 
4000000 z-scores for each situation (i.e. for each 
combination of number of participants, number of test 
results per participant and sr/sL ratio) in 40 groups of each. 
This grouping enabled us to check how repeatable were 
the computed α and β within the 40 groups and compute 
a related interval of confidence (IC). This IC always 
happened to be less than ±2% (with enlarging coefficient 
k=2) and in all cases significantly lower than of the 
computed α and β. 

2.4. Impact of the type of statistics used to compute 
the so-called assigned values 

Results with gross errors often occur during the 
organisation of PT. They are usually caused by typing 
errors, by misunderstanding of instructions for 
participation or by using wrong units. In most cases, 
gross errors are due to necessary deviations to routine 
procedures of the labs when they participate to a PT. 
Typically, typing errors usually never occur in real life 
because data transfer is nowadays never performed 
manually, contrarily to the cases of participations to PT. 

However, gross errors are a big problem for the 
statistical data processing, because they strongly impact 
the estimation of statistical parameters. In particular, they 
strongly increase the computed standard deviations. 
Hence they strongly increase the β-risk. On the other 
hand, just ignoring the suspicious results might lead to 
underestimate the standard deviations of reference, 
increasing then the α-risk. 

To face this problem, [2] and [3] recommend to detect 
outliers and/or use so-called robust statistics. These 
robust statistics generally consist in replacing outlying 
results by softened virtual ones, using algorithms 
specifically designed for that. Full information about this 
can be found in particular [3] Annex C and [8]. These 
robust methods tend to produce mean values and standard 
deviations resisting to a certain proportion of outliers 
(called breaking point) but also to decrease the speed of 
convergence of the estimates towards their central values. 
[3] Annex D provides a comparison of the breaking
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points and speeds of convergence of the different 
algorithms it proposes. 

Because of the decrease of their speed of convergence 
[3] and [9] recommend not to use robust statistics for a
low number of participants. However, [10] and [11] went 
quite deeper in studying the issue and both showed that 
using robust statistics considerably improve the 
estimation of central value and scatter of the distribution 
in presence of outliers and consequently improve the 
assessment of the performance of PT with low number of 
participants. They both compared the different robust 
methods usually used but they could not make a 
definitive conclusion that would be valid for all types and 
proportions of outlying results. 

On our own, as PT provider, our line of action has 
always been to use robust statistics, even for low number 
of participants, preferring running the risk of a day-to-
day slightly lower efficiency of assessment than a risk of 
completely misleading one, even sporadically. 

For the sake of this study (which is not to compare the 
efficiency of the different available robust methods), we 
chose to compute α and β-risks without robust statistics 
and with the so-called A algorithm described in [2] and 
[3], which is the most widely used by PT providers. This 
enables to check the impact of using robust statistics or 
not without increasing to much the number of necessary 
calculations. 

In order to check the impact of outliers, we produced 
series of test results without outliers and with one outlier 
which true z-score varies from z=3,5 to z=10. It follows 
that the proportion of outliers depends on the number of 
participants p, from 20% for p=5 to 3,3% for p=30. This 
option does not necessarily represent faithfully what 
happens in practice (see [10] and [11] for that), but 1. it 
does not request any modelling of outlying and 2. it 
provides information about the impact of outliers easier 
to handle. 

2.5. Impact of the number of repetitions by each 
participant, with regard to interlaboratory and 
repeatability standard deviations  

In almost all cases, PT providers use z-scores or 
equivalents to assess the performance of the participants. 
According to [3] and [4], z-scores can be computed 
according to the equation (2): 

𝑧 =
𝑥௜ − 𝑋௣௧

𝜎௣௧

 (2) 

where 𝑥௜ is the result of the participant “i”, 
𝑋௣௧  is the central value 
and 𝜎௣௧ is the standard deviation assigned for the PT. 

The performance is regarded as satisfactory when 𝑧 ∈
[−2; +2] and not satisfactory when  𝑧 ∉ ] − 3; +3[. 

These limits implicitly refer to the idea that the 
probabilities for these events to occur are respectively 95% 
and 0,3%. Consequently, the theoretical α-risk is 0,3%. 
In other words, the probability to decide that the results 
are unsatisfactory while in fact they do belong to the main 
population is 0,3%. 

In fact, this would be true if σpt had exactly 
represented σBL, standard deviation of the biases of all the 
participating laboratories, what is never true. In most 
cases, σpt is computed as s (or s* when a robust algorithm 

is used), defined in [2] and [3] as the standard deviation 
of the results of all participants. Then, in practice, σpt can 
be computed with the equation (3): 

𝜎௣௧
ଶ = 𝜎஻௅

ଶ + 𝜎௜௅
ଶ +

𝜎௥
ଶ

𝑁௥

+
𝜎ு

ଶ

𝑁௦

(3) 

where σBL is the standard deviation of the biases of the 
participating laboratories, 

σiL is the standard deviation due to internal scatter of the 
laboratory results other than repeatability (differences between 
operators, machines of the lab, variations of environmental 
conditions within the lab along the time), 

σr is the repeatability standard deviation,  
Nr is the number of test results per lab,  
σH is the standard deviation representing the homogeneity 

of samples 
and Ns is the number of samples provided to each lab. 

In other words, the test results that a given lab sends 
to the PT provider are not only governed by their bias, 
but also by which combination of equipment – operator 
– testing conditions that are used to perform the tests for
PT, by the repeatability of tests and by chance with regard
to inhomogeneities of samples.

In any cases, σpt is then always greater than σBL, what 
leads to α-risk lower than the expected 0,3%, but also and 
consequently to increased β-risk. 

In some cases, for example when σr >> σBL and only 
one test result is sent by each lab, the PT can become 
completely inefficient (see 3.3 here after). 

In practice: 
1. σiL usually cannot be computed, because each lab

provides results obtained by only one operator, one test 
equipment set, performed in a short period of time. 
Consequently, when each lab provides several test results, 
their standard deviation is sr and does not include any 
contribution of σiL; 

2. In most cases, labs are requested to perform a few
tests on a same sample or one test on each of a few 
samples. In these conditions, σr and σH cannot be 
computed separately. 

Consequently, in most cases only two standard 
deviations are governing the assessment: 

1. An interlaboratory standard deviation that we call
σL in our study, and that includes σBL, σiL and, when only 
one sample is provided, σH; 

2. A repeatability standard deviation that we call σr in
our study, and that includes σr and σH when several 
samples are provided and one test per sample is 
performed. 

When only one test result from only one sample is 
provided per each participant (what happens in fact quite 
often), σpt is then the reproducibility standard deviation 
σR. 

By the way, we see here that PT providers could 
strongly improve their scheme and use ANOVA to 
separate all these standard deviations, but this goes far 
beyond the scope of this study and is not dealt with here. 

To come back to our study, we computed α and β-
risks for σr/σL from 0,1 to 3 (corresponding to σr/σR from 
0,1 to 0,95 that encompass the ratios actually encountered 
in practice) and for Nr (number of test results per lab) 
from 1 to up to 48. This so high number of repetitions is 
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in practice never encountered. However, including it in 
our scheme made possible to investigate whether there 
could be of some benefit in some cases. 

3. RESULTS AND DISCUSSIONS

3.1. Pertinence of a ratio relating repeatability, 
interlaboratory standard deviation and number 
of test results per participant 

To deal with the issue exposed at chapter 2.5, we 
defined a parameter λ defined as follows: 

𝜆 =
𝜎௥

𝜎௅ × ඥ𝑁௥
(4) 

where σr, is repeatability, 
σL is interlaboratory standard deviation, 
and Nr is the number of test results per lab. 

This parameter reflects the idea that each participant’s 
test results are distributed on a Gaussian distribution with 
its bias as mean value and 𝜎௥ ඥ𝑁௥⁄  as standard deviation. 

We found out that this parameter is valid to describe 
the full effect described in chapter 2.5, see Figure 1 here 
after. 

Figure 1: α and β-risks for participants without outlier in 
function of λ and number of participants (from left to right, 

p = 5 – 6 – 8 – 10 – 13 – 16 – 20 – 25 – 30) 

The figure clearly shows that, for each number of 
participants, the sr/sL curves are in extension of each other, 
so that a merge of these curves make sense, as shown in 
Figure 2 here after. 

Figure 2: α and β-risks for participants without outlier in 
function of the number of participants  

3.2. Impact of the use of robust statistics 
[2] and [3] recommend not to use robust statistics

when the number of participants is low. However, this 
recommendation was made with consideration to the loss 
of efficiency when doing so. However, [10] and [11] did 

not confirm that robust statistics should not be used with 
little number of participants.  

In fact, our computations confirmed that: 
1. The α-risk is slightly increased when using robust

statistics, what is consistent with the related loss of 
efficiency; 

2. The β-risk is significantly reduced when using
robust statistics, what is consistent with the better 
robustness of the assigned values. 

In details, three cases were considered: 
1. Comparison of risks for participants when no

outlier is present; 
2. Comparison of risks for not outlying participants

when one outlier is present; 
3. Comparison of risks β for a outlier (by definition,

in that case, the α-risk does not exist). 

In the first case, illustrated in Figure 3, we observed 
that α-risk slightly increases while the β-risk slightly 
decreases. However, both evolutions are not significant 
compared to the impact of the other factors (λ and Np). 

Figure 3: Comparison of α and β-risks obtained with 
Algorithm A and without robust statistics (m and s), for 

participants without any outlier in function of λ  

In the second case, illustrated in Figure 4, we 
observed that α-risk slightly increases while the β-risk 
significant decreases when the λ factor is adverse (i.e. 
when λ>1). In particular, we can see that even with 30 
participants and λ>1, statistics not robust completely fail 
to detect participants with z>3. 

Figure 4: Comparison of α and β-risks obtained with 
Algorithm A and with statistics not robust (m and s), for main 
participants when an outlier with z=10 is present, in function 

of λ  

In the third case, illustrated in Figure 5, we observed 
that AlgoA is significantly more efficient to detect 
outliers when PT conditions are adverse (i.e. when λ>1 
and/or when Np<13). 

IMEKO TC11 & TC24 Joint Hybrid Conference 
Dubrovnik, Croatia | Oct 17 - 19, 2022

120



Figure 5: β-risks obtained with Algorithm A and with not 
robust statistics, for an outlier with z=10, in function of λ  

3.3. Impact of λ ratio 
Figure 2 clearly shows that both α and β-risks 

decrease with λ until a certain value of λ that we 
evaluated to be 0,17, whatever the number of participants. 

This also occurs for other cases (i.e. when an outlier 
is present) as shown in Table 2. 

Table 2: Lower λ limits under which α and β-risks decrease 
anymore according to the number of participants (α and β in %, 
computed with Algo A) 

No outlier 

Main 
participant 

with one 
outlier 

Outlier 

Np λ α β α β α β 

5 0,17 0,5 80 0,55 90 - 22

6 0,17 0,45 65 0,53 80 - 2

8 0,17 0,30 40 0,44 65 - 0

10 0,17 0,2 23 0,38 59 - 0

13 0,17 0,12 12 0,32 50 - 0

16 0,17 0,10 10 0,25 45 - 0

20 0,17 0,05 5 0,22 40 - 0

25 0,17 0,03 3 0,18 38 - 0

30 0,17 0,01 1 0,16 34 - 0 

PT providers do not control σr and σL, which depend 
on the test method, but they control Nr (the number of test 
results per lab). Hence, they control λ (increasing Nr 
decreases λ, see Equation 4). They should use their 
historical data or literature to determine, sr/sR for each test 
method proposed for PT and use Table 3 to determine the 
minimum Nr values to optimize the PT programs. 
However, practical reasons may limit Nr (costs or 
impossibilities of production or transportation of the 
samples, or for laboratories to perform the tests). 

Table 3: Optimal number of repetitions for PTs, according to 
the sr/sL and sr/sR ratios. 

sr/sL sr/sR Nr 

≤0,17 ≤0,17 1 

0,3 0,29 3 

0,42 0,39 6 

0,59 0,51 12 

1 0,71 35 

3 0,95 310 

As a conclusion, when Nr is chosen equal or superior 
than the value of Table 3, the best α and β-risks of Table 
2 can be reached, according to the number of participants. 

Further experiments are requested to understand the 
undergrounds of this λ=0,17 constant. In particular, it 
should be studied how it varies with the definitions of H0 
and H1 (see 2.1). 

3.4. Discussion about α-risks 
Theoretical α-risk with our definition of H0 is 

0,0027/0,95 = 0,28% (probability that |zcalc|>3 while 
|ztrue|<2). This risk is reduced by the impact of the 
repeatability, especially when the λ value is high (see 
2.5). When the PT conditions are bad (i.e. λ>1 and/or 
Np<13) the use of robust algorithms tend to increase α-
risk while the use of mean value and standard deviation 
tend to decrease α-risk.  

On the other hand, the comparison of Figure 3 and 
Figure 4 shows that the presence of outliers tends to 
decrease α-risk. Indeed, in those cases the σpt standard 
deviation is significantly over estimated, what decreases 
the z-scores of all participants including those of the 
opposite side of the distribution of results. 

In any cases, even in very bad PT conditions (i.e. λ=3 
and/or Np=5) α-risk always remains very low (less than 
0,7%), see Figure 3. 

3.5. Discussion about β-risks 
Whatever the situation (with or without presence of 

an outlier), β is mainly governed by 1. the λ ratio and 2. 
the number of participants. 

Without any outlier, using λ≤0,3 and Np≥13,  is 
needed to get a β-risk less than 20%, see Figure 3. 

When an outlier whose z=10 is present: 
1. The β-risk for the main population is very close to

0 in almost all cases for which λ≤0,9, whatever Np, see 
Figure 4; 

2. The β-risk for the outlier is under control as soon
as λ≤0,3, whatever the number of participants, see Figure 
5 

Figure 6 and Figure 7 show the β-risks respectively 
for the main participants and to the outlier in function of 
the outlier’s z-score. 

Figure 6: β-risks obtained with Algorithm A and λ=0,17 for 
the main participants when an outlier is present, in function of 

the outlier’s z-score. 

It is reminded that 0,3% of the participants of the 
main population get z-scores z<-3 or z>+3. However, the 
H0 hypothesis considers them as outliers, so that the H1 
hypothesis can be checked, i.e. a β-risk can be computed. 
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Figure 7: β-risks obtained with Algorithm A and λ=0,17 for an 
outlier in function of its z-score. 

These figures show that 6 participants are enough to 
detect a strongly outlying participant (whose z-score is 
10), while 30 participants are not enough to detect a 
slightly outlying participant (whose z-score is 3,5). 

3.6. General conclusions 
This study enabled to show that: 
1. The ratio 𝜆 = 𝜎௥ (𝜎௅ × ඥ𝑁௥)⁄  is of main importance

to control the efficiency of a PT scheme, even more than 
the number of participants. The PT providers should then 
care Nr, number of test results per participant that they 
request; 

2. Robust algorithms improve the efficiency of the PT
program (i.e. β-risk) at a slight expense on α-risk. This 
comes from a significantly better estimation of the 
standard deviation of reference when an outlier is present 
among the participants; 

3. Even in adverse conditions, the α-risk is always
very low (less than 0,7%); 

4. A number of 6 participants is large enough to detect
a strongly outlying participant provided that good PT 
conditions (i.e. low value of λ) are present. 

Reference standards [2] and [3] recommend not to 
organise an ILC with less than 12 participants. This 
makes sense for [2], which goal is to determine the 
performance of a test method. It makes less sense for [3], 
which goal is to check the performance of a lab. 
Obviously, when no PT is organised, the β-risk is 100%, 
as any lab having a problem cannot at all realise it! 
Consequently, for test methods that are performed by a 
little number of labs, it is probably better to organise PT 
with 6 participants than nothing. In those cases, the PT 
provider should specially care the Nr it requests, to ensure 
a proper λ value and consequently an efficiency as good 
as possible. 

4. SUMMARY

A minimal number of participants is requested by 
reference standards to organise a PT program, in order to 
ensure a minimal efficiency of it. However, these 
recommendations mainly care the so-called α-risk to 
trigger an alert where it should not, rather than the so 
called β-risk not to trigger an alert where it should. 

This paper shows: 
1. How an alternative hypothesis for computing the β-

risk can be defined; 
2. How the Monte-Carlo method can be used to

overcome the difficulties of calculation of β-risk; 

3. How a ratio 𝜆 = 𝜎௥ (𝜎௅ × ඥ𝑁௥)⁄  mainly governs the
efficiency of the PT, even more than the number of 
participants; 

4. That a limit value 0,17 exists for λ, ensuring a max
efficiency of the PT for each number of participants; 

5. Confirm that using the so-called robust statistical
methods as described in the reference standards should 
always be used, even for low numbers of participants; 

6. Confirm that in all cases, the α-risk remains always
low, even with a very low number of participants; 

7. Provide numerical values of β-risks for main
participants as well as for outliers, in function of the λ 
ratio, number of participants and the z-score of the 
outlying participant; 

8. Provide guidance to improve the β-risk of PT
programs, whatever the number of participants; 

9. Confirm that a PT with a low number of
participants is (almost) always better than nothing. 
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