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Abstract: 

The aim of this study was to estimate uncertainty 

arising from the sampling of food for 

microbiological analysis. A balanced experimental 
design using the duplicate method was a method of 

choice for empirical estimation of uncertainty. 

Duplicate test portions were drawn from both test 
samples and analyzed in duplicate. This approach 

allowed the estimation of overall measurement 

uncertainty and its components; analytical 

uncertainty and sampling uncertainty. Classical 
ANOVA and Robust ANOVA were used for the 

calculation. Based on 12 sampling targets of minced 

meat, uncertainty from sampling was estimated as 
0.10-0.11 log10 cfu/g for microbiological parameter 

aerobic colony count, while analytical uncertainty 

was 0.04 log10 cfu/g. Estimated uncertainties 
proved to be fit-for-purpose. Results showed that 

uncertainty from sampling is the major contributor 

to overall measurement uncertainty.   
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1. INTRODUCTION 

Due to International Standard ISO 17025 [1] 
measurement uncertainty had become a “hot” topic 

among testing and calibrating laboratories. The new 

2017 revision of the Standard introduced an even 

“hotter” topic –the uncertainty from sampling. In 
the last decade, the number of scientific and/or 

professional papers on this subject had been very 

scarce so there is not much data for comparison.  
Sources of uncertainty in food microbiology 

include errors and variations in sampling, weighing, 

volumes of diluent, sample preparation, delays 
during analysis, microbiological culture media, 

incubation conditions, competitive microflora, and 

intrinsic distribution of colonies [2]. It is generally 

accepted that in conditions where these sources of 
variability are minimized, repeatability of 

enumerated microbiological data may only be 

precise to about 0.5 log10 units [3]. 
Measurement uncertainty is a result of combined 

analytical and sampling uncertainty. In food 

microbiology, three major components of analytical 
uncertainty had been recognized: technical 

uncertainty, matrix uncertainty, and distributional 

uncertainty [4]. Technical uncertainty arises from 

operational variability and is a characteristic of an 

analytical method. Matrix uncertainty however 
refers only to the effects of microbial distribution 

within a certain matrix and is a characteristic of that 

specific matrix. Distributional uncertainty arises 
from intrinsic variability associated with the 

distribution of microorganisms in the sample and its 

dilutions. Even without the contribution from 

sampling, uncertainty in food microbiology is 
expected to be high [5]. 

Sampling as an initial step in any analysis 

inevitably introduces some level of uncertainty that 
contributes to overall measurement uncertainty. In 

food microbiology, uncertainty from sampling is 

expected to be (very) high as it describes variability 
between and within the samples due to the 

heterogeneous distribution of analyte [6]. The 

heterogeneous distribution of microorganisms in 

foods has long been recognized, as well as the fact 
that their distribution in food matrices does not 

conform to the normal distribution [7]. In general, 

the distribution of microorganisms in most 
suspensions follows the Poisson distribution. 

However, in solid and multi-component food 

matrices the distribution of microorganisms is 

complex due to the presence of clumps and chains 
of microorganisms. The log-normal distribution 

most adequately describes the heterogeneity of 

microorganisms in food matrices [6]. 
According to Ramsey et al. [8], estimates of 

sampling uncertainty for chemical contaminants in 

foodstuffs are often larger than estimates of 
analytical uncertainty. Jarvis et al. [9] previously 

reported that estimated sampling uncertainty 

contributed two-thirds to the total measurement 

uncertainty of aerobic mesophilic count on prawns. 
The authors concluded that sampling uncertainty is 

likely to exceed analytical uncertainty in other foods 

as well. They also emphasized that ignoring 
sampling uncertainty leads to underestimates of 

total measurement uncertainty and may adversely 

affect the assessment for compliance of food with 
legislative and commercial microbiological criteria 

[9]. 
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Main intention of this paper is to share 

experience on the estimation of uncertainty from 
sampling from the perspective of a small-to-

moderate sample throughput laboratory that 

performs its sampling. 

2. MATERIALS AND METHODS

The same sampling procedure according to 

ISO/TS 17728:2015 [10] was performed on 12 

sampling targets of minced meat (retail lots). 
Sampling targets were chosen within the main 

criteria of fitness-for-purpose and to represent usual 

routine samples of our laboratory.  
The samples were transported chilled to the 

laboratory where they were analyzed for aerobic 

colony count, according to the experimental design 

described below.  

2.1. Experimental design 

Uncertainty from sampling was estimated by a 

balanced design using the duplicate method as 
described in Eurachem Guide [11]. The duplicate 

method is based upon a single sampler duplicating 

a small proportion of the primary samples, selected 
at random to represent the typical composition of 

such targets. The duplicated samples were taken by 

repeating the same sampling protocol by a single 

person (sampler), with permitted variations that 
reflect the ambiguity in the sampling protocol and 

the effect of small-scale heterogeneity of the analyte 

of interest on the implementation of that protocol. 
Both of the duplicated samples were subjected to 

physical preparation resulting in two separate test 

samples. Duplicate test portions were drawn from 
both of the test samples and analyzed in duplicate. 

This system of duplicated sampling and analysis on 

both samples is known as a ‘balanced design’ (see 

Figure 1).  

2.2. Method 

Aerobic colony count (ACC) was enumerated 

according to ISO 4833-1:2012 [12], by pour plate 
technique using Plate Count Agar (Oxoid, UK). The 

plates were incubated at 30±1 °C for 72±3 hours. 

Analysis was conducted in repeatability conditions. 

Colonies were counted and calculated according to 
ISO 4833-1:2012. Results were expressed as 

colony-forming units per gram (cfu/g), which were 

then normalized by log10 transformation. Logarithm 
values were used in further statistical analysis. 

2.3. Statistical procedures 

Before further calculations results were 

examined for outliers using Grubb’s test and tested 
for normality with Shapiro-Wilk and Kolmogorov-

Smirnov tests using Analyse-it® for Excel (Analyse-

it Software Ltd, Leeds, UK, v6.01.1.)  

Standard uncertainty (𝑢) for a single target was 

estimated using equation (1). 

𝑢 = 𝑠𝑚𝑒𝑎𝑠 = √𝑠sampling
2 + 𝑠analytical

2   (1) 

Standard uncertainty (𝑢 = 𝑠𝑡𝑜𝑡𝑎𝑙 ) for multiple 

targets was estimated using equation (2). 

𝑢 = √𝑠btw−targets
2 +𝑠sampling

2 + 𝑠analytical
2  (2) 

Analysis of variance was performed by both 

classical ANOVA and robust ANOVA, using 
RANOVA3 software of the Analytical Methods 

Committee (AMC) of the Royal Society of 

Chemistry was used, available on their website 
(https://www.rsc.org). RANOVA3 software 

calculated total standard uncertainty for multiple 

targets, the variance between targets, sampling 

uncertainty, and analytical uncertainty.   

Figure 1: Balanced experimental design for estimation of uncertainty from sampling using the duplicate method [11] 
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3. RESULTS  

Aerobic colony counts of all samples taken in 
duplicate during sampling (sample 1 and sample 2) 

and analyzed in duplicate (A1 and A2) are shown in 

Table 1.  

Table 1: Results of aerobic colony counts, as log10 cfu/g, 

for 12 sampling targets 

Sampling 

target 

Sample 1 Sample 2 

A1 A2 A1 A2 

1 4.28 4.29 4.32 4.30 

2 4.33 4.35 4.32 4.29 

3 4.89 4.81 4.74 4.72 

4 5.20 5.10 5.19 5.18 

5 5.13 5.18 5.13 5.17 

6 5.07 5.06 5.08 5.10 

7 4.86 4.86 4.46 4.61 

8 4.72 4.65 4.78 4.85 

9 5.02 5.08 5.40 5.38 

10 5.25 5.24 5.09 5.15 

11 5.89 5.80 5.91 5.97 

12 5.92 5.93 5.73 5.73 

 

Normality tests showed that data conform to the 
normal distribution (normality was not rejected by 

statistical tests). Grubb’s test recognized one value as 

further than the rest but not a significant outlier, so no 

outliers were detected. 
Based on obtained results in Table 1 total standard 

uncertainty, which includes variance between targets, 

sampling, and analytical variance was calculated 
using RANOVA3 software (Figure 2 and Figure 3). 

There was no significant difference between 

variances calculated by classical and robust ANOVA. 
Uncertainty from sampling was estimated as 0.11 

log10 cfu/g by classical ANOVA and 0.10 log10 cfu/g 

by robust ANOVA, which corresponds to relative 

uncertainty of 25.3% and 23% respectively 
(conversion of the decimal logarithm to natural 

logarithm). Analytical uncertainty was estimated as 

0.04 log10 cfu/g (relative uncertainty 9.2%). 

 
Figure 2: Contributions to total variance calculated by 

Classical ANOVA 

 
 

 
Figure 3: Contributions to total variance calculated by 

Robust ANOVA  

 

Results also showed that the contribution from 

sampling to total measurement variance is 86-88% 
(Table 2). According to both classical and robust 

ANOVA, the variance between targets is the greatest 

contribution to the total variance, while sampling is 
the major contributor to the variance of measurement; 

see Table 2, Figure 2 and Figure 3. 

 
 

 

 
 

Table 2. Sampling, analytical and total measurement standards deviations and variances, as log10 cfu/g 

Classical ANOVA Sampling Analytical Total measurement 

Standard deviation (SD) 0.11 0.04 0.12 

Variance 0.013 0.002 0.014 

% of total measurement variance 88.9 11.1 - 

 

Robust ANOVA Sampling Analytical Total measurement 

Standard deviation (SD) 0.10 0.04 0.10 

Variance 0.009 0.001 0.011 

% of total measurement variance 86.6 13.4 - 
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4. DISCUSSION

The aim of this study was to estimate the 
uncertainty arising from sampling. At first, we 

obtained a broad range of results (from 103 cfu/g to 

109 cfu/g) since the microbiological quality of target 
samples varied a lot. Such data did not conform to 

the normal distribution and also included a certain 

number of outliers (unpublished data). A need to 

restrict the number of results and data values for 
aerobic colony counts around the median value was 

recognized. At that point, we decided to repeat the 

study on more sampling targets to collect samples 
of the approximately same microbiological quality. 

The biggest challenge of this study was to obtain 

results that are statistically valid and can be 

correctly evaluated so that valid conclusions are 
made. The same statistical problems with results in 

food microbiology were described by Hedges and 

Jarvis [13] as well as Jarvis et al.[3]. Hedges and 
Jarvis [13] stated that in most cases microbiological 

data are approximately lognormal due to over-

dispersion and other theoretical distributions (such 
as the negative binomial) may give better fits but 

their use may introduce problems of calculation.  

A great challenge was also the choice and 

interpretation of statistical methods for the analysis 
of data. Standard ANOVA is usually a statistical 

standard in the analysis of microbiological data. 

However, Hedges and Jarvis [13] showed that 
standard analysis of variance is often sub-optimal 

for analysis of microbial data and that robust 

methods that reduce the impact of outlier values are 
more appropriate when testing statistical 

significance. Jarvis et al. [3] stated that the choice 

of statistical methods by which the data are analyzed 

is also one of the major influences on the estimation 
of uncertainty. The standard ANOVA requires data 

that conform well to normal distribution. If that is 

not the case, the statistically generated results can 
be misleading. One should keep in mind that the 

removal of outliers can generate more reliable data, 

but at the same time can result in the loss of values 

that may be true estimates of the analyte [3].  
In our study, the total standard deviation 

(uncertainty) for multiple targets was estimated at 

around 0.5 log10 cfu/g (see Figure 2 and Figure 3), 
with the greatest contribution from between-targets 

uncertainty. Uncertainty in food microbiology is 

regarded as very high, usually expected within the 
range ±0.5 log10 units. Jarvis et al. [3] reported 

reproducibility uncertainty as high as 0.77 log10 

cfu/g. According to Corry et al. [14], estimates of 

repeatability and reproducibility uncertainty for 
ACC ranged from 0.11 to 0.60 log10 cfu/g.  

Analytical uncertainty was the smallest 

contributor to overall uncertainty, estimated as 0.04 

log10 cfu/g (relative uncertainty 9.2%) by both 

classical and robust ANOVA (see Figure 2 and 
Figure 3). This estimate is lower than other 

published data ([15]; [3]; [16]), due to repeatability 

conditions that were applied with the particular 
purpose of minimizing the analytical uncertainty. 

Previous work of Ljevaković-Musladin [16] 

showed that analytical uncertainty for ACC was at 

0.08-0.09 log10 cfu/g (expressed as intralaboratory 
reproducibility standard deviation). In comparison, 

Augustin and Carlier reported that the standard 

deviation associated with the analytical method for 
ACC was on average 0.111 log10 cfu/g [15].  

One of the components which can largely 

contribute to analytical uncertainty is matrix 

uncertainty. Although also caused by the 
heterogeneity of the sample, matrix uncertainty is 

regarded as different than the sampling uncertainty. 

In their ISO Trials on measurement uncertainty, Ah-
Soon and Cornu [17] reported estimated matrix 

uncertainties for certain heterogeneous foods. 

Matrix uncertainty for homogenous foods and those 
foods which can be well homogenized is estimated 

at 0.1 log10 cfu/g. Minced meat is considered as a 

food that can be well homogenized in a laboratory. 

Our sampling uncertainty estimate at 0.10-0.11 
log10 cfu/g resembled matrix uncertainty of minced 

meat. According to Augustin and Carlier matrix 

uncertainty needs to be included in the overall 
assessment of uncertainty [15].  

In food microbiology uncertainty from sampling 

arises from the heterogeneity of the target sample, 
effects of sampling strategy, the physical state of the 

target sample, temperature effects, transportation, 

and storage of samples. Heterogeneity is the most 

important contributor to sampling variability [6].  
To our knowledge, there is currently only one 

study on the contribution of sampling uncertainty to 

total measurement uncertainty in food microbiology, 
so there is not much data for comparison. According 

to a study by Jarvis et al. [9] sampling variances 

accounted for at least 50%, and in most cases for 

>85% of the overall reproducibility variance. The
results of our study are in full agreement with the

respective findings since our sampling uncertainty

contributed to 86%-88% of the total measurement
variance (see Table 2).

In their respective study, Jarvis et al. [9] also 

reported standard reproducibility deviation, which 
includes the contribution from sampling, ranged 

from 0.11 to 0.59 log10 cfu/g for ACC in different 

foods (0.5 log10 cfu/g in minced meat). Our estimate 

of sampling uncertainty at 0.10-0.11 log10 cfu/g was 
considered in agreement with the lower value of the 

range in those findings. According to Corry et al. 

[18], it is possible to determine microbial colony 
counts on diverse food matrices with a higher 
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analytical precision (lower uncertainty) by aseptic 

compositing of samples or by increasing the 
quantity of sample examined.  

5. SUMMARY

Estimation of uncertainty from sampling is a 
demanding task, which requires substantial time, 

resources, and statistical knowledge. A major 

challenge in this task was obtaining results that 

comply with normal distribution so they can be 
statistically analyzed to make valid conclusions.  

Our study showed that uncertainty from 

sampling is indeed the major contributor to the 
overall uncertainty of measurement but to a lesser 

degree than expected. For our routine sampling 

tasks, this uncertainty was deemed as “fit-for-

purpose”. However, further monitoring is highly 
recommended to prove the level of uncertainty was 

well estimated.  
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