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Abstract – The increasing development of neural 
networks for classification and prediction of temporal 
sequences has opened the way for a new development 
of mathematical models for soft sensor design. In 
particular, Long Short-Term Memory (LSTM) 
networks have greatly improved execution time and 
reduced error in both single-step and multi-step 
prediction. In this context, it is therefore possible to 
improve on the current concept of Instrument Fault 
Detection and Isolation (IFDI), reducing costs and 
footprint by not using physical redundancies of 
sensitive elements but by employing virtual sensors 
themselves. Therefore, the work aims to develop a soft 
sensor for rear suspension stroke using an LSTM 
network. This new approach was trained on over 50000 
samples acquired in a real-world environment, and the 
results were compared with ground truth on a total of 
over 100000 samples. The results of the analysis showed 
excellent potential of the method and wide room for 
improvement in future developments. 
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 I. INTRODUCTION 

The automotive field is undergoing major changes due 
to the increasingly pervasive spread of technology and its 
integration into the mechanical elements that make up 
motor vehicles and motorcycles. The process has been 
facilitated by the disruptive development of intelligent and 
interconnected wireless sensor networks in the Internet of 
Things[1]-[4]. The increase in computational power 
accompanied by the reduction in size, due to the ever-
increasing miniaturization of hardware elements, has made 
it possible to implement not only systems capable of 
providing real-time vehicle status diagnostics, but also to 
monitor and act on vehicle processes characterized by 
extremely faster dynamics. Examples include powertrain 
management in hybrid engines characterized by 
algorithms capable of choosing the right strategy for 
utilizing the thermal and electrical part of the powertrain 
based on numerous factors measured in real time, such as 
state of charge, temperature and power demand [7]-[11]. 

Another example is the management systems of fully 
electric vehicles, which need to measure numerous 
parameters in real time, such as battery cell working area 
for maintaining the Safe Operating Area, operating voltage 
of individual cells, state-of-charge balancing, charging 
through regenerative braking, and others in order to 
comply without delay with requests made by the driver. 

The development of measurement systems has also 
opened the door to active and intelligent management of 
vehicle setups, operated according to the type of strategy 
desired and adapted to road and operational conditions. 
This makes it possible, among other things, to improve 
safety on board when the vehicle is in risky conditions, 
such as on ice or slippery road surfaces, but also to be able 
to always obtain the best set-up to maximize the vehicle's 
potential in sports driving [12]. 

These applications therefore require a sensor network 
that is always operational and free from errors and 
malfunctions, as incorrect data can completely invalidate 
the strategies adopted by the vehicle's ECU, affecting 
performance or even causing damage to the vehicle. 

Extensive use of physical and analytical redundancy 
has been made to overcome these problems. Physical 
redundancy in particular aims to increase the number of 
sensing elements per individual measurand in order to 
recognize and isolate a possible failure (IFDI) while 
ensuring system uptime through the backup sensor [13]. 

Although the solution is the one that gives the highest 
guarantee of fault isolation, it has cost and space as major 
limitations: in fact, it is not always possible to add more 
sensing elements to the systems, due to scarce space 
available because of an already very demanding 
mechanical design. The economic aspect is also very 
important, since, according to the logic of physical 
redundancy, each measurand would have to be associated 
with two or more sensors, levitating the final design costs 
considerably. 

Analytical redundancy, on the other hand, does not 
present the problems outlined above. This in fact is based 
on the use of mathematical models instead of physical 
sensors. Mathematical models take as input some physical 
quantities that have causal relationships with the 
phenomenon to be measured and estimate the value of the 
same. This concept is called soft sensing or virtual sensing 
[14]-[15]. In this context, it is possible to apply soft 
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sensing techniques to IFDI: in particular, it is possible to 
associate each sensor physically installed in the equipment 
to be monitored with the output of a soft sensor, so that 
there are two signals. In the event of a malfunction of the 
physical sensor, it will therefore be possible to isolate the 
fault thanks to the comparison with the output provided by 
the soft sensor. 

The complexity in developing a soft sensor concerns 
mathematical modelling: in fact, it is not always possible 
to develop a model that relates, uniquely, the inputs to the 
desired output. Recently, the development of new machine 
learning and deep learning techniques has made it possible 
to greatly improve the development of soft sensors even 
without direct knowledge of the mathematical model, for 
example, through the use of NARX networks (nonlinear 
autoregressive network with exogenous inputs) [15] and 
other algorithms for data forecasting [17]. 

As for new deep learning techniques, Long Short-Term 
Memory (LSTM) networks have found great application 
in the area of classification and prediction of temporal 
sequences, which makes them particularly suitable for use 
as an algorithmic basis for soft sensor development 
[18],[19]. 

Therefore, this work will deal with the development of 
a soft sensor using a novel neural network architecture 
based on LSTM cells. The suspension system of a motor 
vehicle will be examined for the application case. The next 
section will describe the system under consideration, and 
Section III will describe the development of the LSTM 

network. Finally, Section IV will present the results. 

 II. SYSTEM DESCRIPTION 

The system under consideration concerns the 
suspension dynamics of a motorcycle. The set goal was to 
develop the virtual version of the linear displacement 
sensor for monitoring the rear suspension stroke. Thus, the 
main influencing factors on the rear suspension stroke 
were examined, which were found to be: the front 
suspension stroke, pitch rate and speed.  

In this way, it would be possible to compare the 
residual nominal operating values of the rear suspension 
stroke, calculated by the neural network, with those 
obtained from the sensor, in order to assume a fault state 
of the sensor itself, and thus to isolate it. 

Therefore, the sensors chosen were Linear 
Displacement Sensors, for measuring front and rear 
suspension stroke, a magnetic encoder mounted on the 
front wheel for measuring motorcycle speed, and a 
gyroscope for measuring motorcycle pitch (figure 1). 

Data collection took place on a stretch of road of about 
10 km in order to obtain data as close to reality as possible. 
The data were subsampled at 100 Hz, a frequency 
consistent with the dynamics of the phenomena under 
investigation. 
Eventually, three batches of data consisting of 50000 
samples each have been obtained 

The data have then been normalized according to the 
values given in Table I and with the specific equation (1) 
as a requirement of the LSTM network optimizer. 

 
𝑄𝑄(𝑖𝑖) = 𝑞𝑞(𝑖𝑖)−max (𝑞𝑞)

max(𝑞𝑞)−min (𝑞𝑞)
   (1) 

 III. SOFT SENSOR DESIGN 

As mentioned in the introduction, it was decided to 
employ a recurrent neural network, specifically a network 
composed of LSTM cells, for the development of the soft 
sensor. The LSTM is an improvement of fully connected 
neural networks and has better performance, especially for 
medium to long sequences [20]. 

Therefore, the designed neural network has been 
equipped with 3 inputs, one per time sequence of input to 
the soft sensing system. The inputs data have been: 

• Front suspension stroke; 
• Pitch rate; 
• Speed. 

The central layer, the core of the network, has been 

 
Fig. 1 System under test 

Table I.  Normalization values 

Measured quantity Min Max 
Front stroke [mm] 0 150 
Rear stroke [mm] 0 150 

Pitch rate [°/s] -80 +80 
Speed [m/s] 0 56 

 

Table II.  Proposed Neural Network Architecture 

Layer Type Shape 
1 Input (Batch, 100, 3) 
2 LSTM (Batch, 32) 
3 Dense (Output) (Batch, 1) 
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equipped with 32 LSTM units. This number resulted from 
a series of experimental tests, as there is no unambiguous 
methodology for defining the optimal number of LSTM 
units. The number of LSTM and hidden layer units was 
specifically chosen as a tradeoff between required 
computational power and prediction error [21]. The 
number of neurons in the output layer has been one, with 
no activation function, since the task of the network is not 
to classify a time sequence but to predict the value of the 
output from the inputs provided. The output of the neural 
network has been the Rear Suspension Stroke data. 

The architecture of the proposed neural network is 
shown in Table II. One of the three batches of data, each 
consisting of 50000 samples, was used for network 
training, applying a training/validation split of 70%. 
Training of the neural network has been carried out using 
the mean squared error as the loss function. Moreover, the 
LSTM network has been trained and used in single step 

mode, that is, the prediction was made and validated only 
for a future time step. This choice was motivated by the 
considerable variability of the measurands under 
consideration and the need not to know the values of rear 
suspension stroke too far into the future. The other 
hyperparameters used for training are shown in Table III. 

 IV. RESULTS AND DISCUSSIONS 

For network testing, two data batches consisting of 
50000 samples each were used, as explained in the 
previous section. These data are usable for testing because 
they are not extrapolated from either the train split or the 
validation split; therefore, there is no risk of altering the 
results with data similar to those seen by the network in 
training. 

The best model used in training was thus employed for 
the inference of rear suspension stroke values, using as 
input the front suspension stroke, pitch and speed data 
belonging to these two batches. 

First, it was decided to compare the time sequences in 
their entirety by superimposing the results of the neural 
network inference and the values read from the 
corresponding sensor. The results of the comparison can 
be seen in Figure 2 and Figure 3.  

Figure 4 and Figure 5 also show the results against the 
expected values in the form of scatter plot 

Table III.  Training Hyperparameters 

Hyperparameter Value 
Learning rate 0.001 

Batch Size 128 
Warm up samples 100 

Epochs 60 
 

 
Fig. 2 Comparison of measured and predicted value for the first 

batch of data 

 
Fig. 3 Comparison of measured and predicted value for the second 

batch of data 

 
Fig. 4 Scatter plot of measured and predicted value for the first 

batch of data 

 
Fig. 5 Scatter plot of measured and predicted value for the second 

batch of data 
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As can be seen from both measurements, the system is 
able to predict the average value of the rear suspension 
stroke very well, with the only exception of the first 5000 
samples of batch two, which were acquired while the 
motorcycle was stationary, therefore have been excluded. 
The system has difficulties in following the signals when 
the dynamics become faster and with very intense 
gradients. This phenomenon does not represent a problem 
if the system is included in an instrument fault detection 
and isolation apparatus, since it is still possible to obtain, 
for each instant of time, a plausible value expected from 
the sensor under examination, thus being able to verify its 
actual functionality.  

Two analyses were then carried out. The first was 
aimed at simply analyzing the error committed by the 
neural network throughout the entire batch of data, thus 
going on to calculate the average relative percent error (2) 
for each of the two batches of data.  

 

𝜀𝜀𝑟𝑟 = �𝑦𝑦𝑝𝑝−𝑦𝑦𝑚𝑚�
𝑦𝑦𝑚𝑚

× 100   (2) 
 

In equation (2), 𝜀𝜀𝑟𝑟 is the average relative percent error, 
𝑦𝑦𝑚𝑚 is the measured value and 𝑦𝑦𝑝𝑝 is the value produced by 
the soft sensor. 

The second analysis was aimed at checking the 
consistency and performance of the network over time In 
particular, an investigation has been made to determine 
whether the relative error results shown in Table IV were 
caused by persistent errors over time or by outliers. For 
this analysis, the results were analyzed with a sliding 
window, thus going to emulate the data flow in real time. 
With this data, Sliding Occurrence Error (SOE) has been 
calculated. This function allows estimating the probability 
distribution of the average relative error in the form of a 

survival function, as in (3). 
 
S(𝑡𝑡) = 𝑃𝑃({𝑇𝑇 > 𝑡𝑡}) = ∫ 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑢𝑢∞

𝑡𝑡 = 1 − 𝐹𝐹(𝑡𝑡) (3) 
 
Where T is a continuous random variable with 

cumulative distribution function F(t) on the interval [0, ∞) 
Then, the average relative error was calculated using a 

sliding window on the dataset, according to equation (4). 
Ls specifies the width, in terms of the number of samples, 
of the sliding window, yp the predicted value, and ym the 
measured value. 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝐿𝐿(𝑖𝑖) =   1
𝐿𝐿𝑆𝑆
∑ �𝑦𝑦𝑝𝑝

(𝑖𝑖−𝑘𝑘)−𝑦𝑦𝑚𝑚(𝑖𝑖−𝑘𝑘)

𝑦𝑦𝑚𝑚(𝑖𝑖−𝑘𝑘)
�𝐿𝐿𝑆𝑆−1

𝑘𝑘=0
 
            (4) 

 
The SOE curve plots the mean relative deviation Emean,L 

on the x-axis and the corresponding relative occurrences in 
the moving window of the prediction error on the y-axis. 

The results of the first analysis are reported in Table IV, 
while the SOE curve for the two batch of data is visible in 
figure 6 and calculated with Ls equal to 60 and an overlap 
of the windows of 80. 

As can be seen from the SOE analysis, the first batch 
of data reported better performance than the second batch 
of data. However, even in the worst case the occurrence of 
a relative error greater than 14% was no greater than 10% 
of the moving windows used for the analysis. These results 
are promising and in line with those obtained previously 
with NARX-type neural networks (nonlinear 
autoregressive exogenous model) [22]. 

 V. CONCLUSIONS AND OUTLOOK 

The work dealt with the development of a soft sensor 
for the rear suspension stroke of a motorcycle to explore 
the feasibility of an IFDI system based on software 
redundancy. In particular, the presented methodology can 
be exploited to detect and highlight abnormal values in 
sensors that may identify a potential malfunction of the 
same.  

The soft sensor was developed using the deep neural 
network LSTM, predicting output from three inputs. The 
results showed a good ability of the network to estimate 
the mean value of the output, committing a larger error for 
the fast dynamics of the measurand. 

Future goals will involve optimization of the network 
and comparison with soft sensing techniques present in the 
state of the art, such as those employing NARX networks. 
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