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Abstract – In the case of test beds for research engines, 
fault detection methods that use models based on 
historical data face a particular challenge. Due to the 
experimental design of the test bed, offline training of 
statistical models with a data set containing all possible 
variations is simply not possible. The methods must 
adapt to the current data situation directly on-site. But 
this involves risks. First, computational time and 
memory requirements can become extremely large 
with high data volumes. Second, the data may be faulty 
and thus negatively affecting the models. To avoid both, 
a selection of data is made before it is used to build the 
fault-free reference model. For this purpose, a new 
statistic is presented as the combination of the 
Mahalanobis distance and the forecast residual. With 
it, it is possible to reduce the update frequency and to 
increase the rate of detected faulty points, since the 
models are no longer manipulated by faulty data points 
and thus the residuals provide a better structure for 
fault detection.  
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 I. INTRODUCTION 

Engine test beds are an essential tool in the 
experimental investigation of combustion concepts and in 
engine development. The complexity of these test beds, 
combined with the large number of sensors and data, 
makes an automated method of monitoring essential. As 
with many other research topics, various approaches to 
fault detection already exist. For model-based fault 
detection, physical models such as energy balances and 
mass balances can be used. The disadvantage is that such 
models require a lot of expert knowledge and it is often not 
possible to monitor all variables with this limited number 
of models. Therefore, models based on a historical data set 
provide a useful complement. 

But even for such statistical models, there exists a 

critical challenge, at least on research engine test beds. In 
particular, the engine and its configuration change 
frequently. This means that it is not possible to collect data 
points from all possible data situations for an offline 
modelling phase. Instead, the models must learn online 
directly on the test bed using the current data. 
Unfortunately, continuously adapting the models to each 
new data point can become very time-consuming and 
memory-intensive. Additionally, there is also the risk of 
adding faulty data to the data set used for model building. 
This can lead to manipulated models that subsequently 
make it impossible to detect further faults.  This means that 
it is not only the models themselves that are important for 
fault detection, but also the quality and quantity of the data 
used for fitting them. 

 II. RELATED RESULTS IN THE LITERATURE 

The modeling of engines is closely related to the 
modeling of engine test benches, as various engines, 
engine settings and operating points are analyzed there, for 
example. Fault detection has been investigated in both 
cases. [1] uses, for example, process models of the 
subsystems of a Diesel engine such as intake, 
injection/combustion and exhaust systems for fault 
detection. In [2], physical and statistical methods are 
combined by using a combination of knowledge-based 
residual generation and statistical residual evaluation for 
automotive Diesel engines. Online monitoring can also be 
applied to electric motors, as described in [3]. Engine test 
beds are well explained and a fault detection approach 
using historical process data is shown in [4]. [5] describes 
the specific physical relationships applied for fault 
detection at engine test beds in detail and also explains the 
important step of fault isolation. 

Thus, fault detection on test beds is a well-known topic, 
and also adaptive methods have already been investigated 
by several authors. [6] gives a good overview of various 
approaches. For example, the process data can be sorted by 
operating mode and different models can be used, as in [7]. 
In just-in-time learning technique, the computation and 
relationship building is done online using similar data in 
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the database as in [8]. Recursive weighting can also be 
used to make well-known fault detection methods such as 
principal component analysis adaptive, as in [9]. Further, 
it is also possible to update the system with information 
about faults [10]. The selection of data before updating the 
model represents a special approach for such an adaptive 
procedure. The necessity of such a preliminary analysis is 
also shown in [11]. 

 III. DESCRIPTION OF THE METHOD 

 A. Model building and fault detection 

Assume that we have already observed 𝑛 
measurements of (𝑝 + 1) variables. One variable is the 
monitored one and thus the response variable of the model, 
𝒚. The remaining variables are used as predictors and are 
summarized to the matrix of predictors 𝑿. With the given 
data set, the unknown parameters of the model can be 
estimated. Complex methods such as machine learning 
approaches can be used for modelling as in [12]. Since we 
are dealing with small data sets and strong linear 
correlations between the variables, the models are built 
using multiple linear regression. Previous studies have 
shown that despite the simplicity of these models, their 
quality was still sufficiently high to be suitable for fault 
diagnosis on engine test beds.  In multiple linear 
regression, we simply need to estimate the parameter 
vector 𝜷 of the model represented in Equation (1): 

 𝒚 = 𝑿𝜷 + 𝜺 

where 𝜺 is the model error term. 
With this model, the new data point given by the value 

of the response variable 𝑦  and the corresponding values 
of the predictor variables 𝒙  can be evaluated. This is done 
by analyzing the forecast residual given in Equation (2): 

 𝑒 = 𝑦 − 𝒙 𝜷. 

This forecast residual should be close to zero in the 
fault-free case. An error alarm is raised if a sequence of 
residuals falls outside of a defined control region. 

 B. Data selection 

For data selection, two measures are to be used. To 
assess whether the new data point is in a new region of the 
data space, a distance measure is used which is one factor 
of the statistic. Various distance measures were 
investigated in this regard. In order to take into account the 
different scaling of the variables, but also the covariance 
between them, the Mahalanobis distance from equation (3) 
is used for data selection: 

 𝑀 = (𝒙 − 𝒙) 𝑺 (𝒙 − 𝒙) 

where �̅� is the sample mean vector and 𝑆 is the sample 
covariance matrix. 

Furthermore, the value of the response variable is 
considered by analyzing the standardized forecast residual 
as shown in equation (4): 

 𝑟 =
𝒙 𝜷

𝒙 𝑿 𝑿 𝒙

 

where is 𝜎 is the estimated model standard deviation. 
The statistic used for data selection is a combination of 

these two measures, given in equation (5): 

 𝑇 =  

where 𝑀 =
( )

( )( )
 is the standardized version of the 

Mahalanobis distance. 
This statistic is large when either the distance is large 

or the residual is small. Both conditions indicate that the 
model should be updated. If the distance is small, the data 
point is close to those already observed. Since this 
indicates only a small amount of new information, the 
point is excluded. As with fault detection, large residuals 
are an indicator of a fault in the data, at least if the distance 
is relatively small and the model quality is sufficiently 
large. Therefore, the corresponding data points are also 
excluded from the modeling. In summary, the ratio of the 
two measures must be appropriate for the point to be added 
to the data set. 

The criterion of data selection requires the 
determination of a threshold value. This threshold can be 
determined with theoretical considerations. It is shown in 
the literature that both statistics follow an F-distribution 
under certain assumptions. Furthermore, similar to the 
analysis of Cook's distance, one can show the 
independence of these two factors. Combining both 
results, it follows that the new statistic also follows an F-
distribution, at least approximately. Thus, the criterion for 
the selection of the data can be set up as given in equation 
(6). Accordingly, a point is excluded from the modeling if 
the corresponding statistic is sufficiently small: 

 𝑇 < 𝑞  

where 𝑞 is theoretical 𝛼-quantile of the 𝐹 ,  -distribution. 
In this way, α percent of all data points are excluded from 
the modeling. 

 IV. RESULTS AND DISCUSSIONS 

The data originate from a single-cylinder research engine 
test bed. The schematic of the test bed is shown in Figure 
1. There, the air-gas exhaust path is illustrated and the 
coolant pipe is shown. Various engines, but also 
combustion concepts, are investigated on such test beds.
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Fig. 1. Schematic of a single-cylinder research engine test bed 

Process faults occur frequently, but sensor faults are 
also an issue. The fault detection scheme shown here aims 
to detect sensor faults of two different types, abrupt faults 
and drifts. 

To prove the advantage of data selection as a step 
before model building, we compare the results of the 
method with continuous updating, i.e., without any data 
selection, with the method in which data points are 
selected and thus updating is performed only when the data 
selection criterion is not fulfilled. For this comparison, we 
used four data sets, each containing 500 measurements 
from the research engine test bed. Each data set contains 
observations of the 23 variables. Only one of these 
variables was used in the analysis as a response and thus 
monitoring variable. The data selection criterion parameter 
was defined as α=0.1. 

We compare the methods in two specific settings. The 
first is the fault-free setup. The goal is that despite the fact 
that less data is used for model fitting, the model quality 
does not decrease. The performance of the model is 
assessed using two criteria: the mean absolute percentage 
error and the mean percentage error. The results for the 
fault-free case are shown in Table 1.  We find that the 
model performance is not negatively affected by the data 
selection procedure and both measures remain almost at 
the same level. 

 

Table 1. Evaluation measures for the fault-free case. 

 No selection Selection 
Fraction of 

points excluded 
0.000 0.127 

Mean absolute 
percentage error 

0.345 0.369 

Mean 
percentage error 

-0.044 -0.054 

 
 
In the faulty case, we analyzed different fault scenarios. 

In such a scenario, a fault of a certain type and with a 

defined fault intensity was simulated on the data of the 
response variable beginning at a certain onset and lasting 
over 100 data points. The fault intensity 𝑓 describes the 
relative amount of the fault compared to the measured 
value: 

 𝑦 = 𝑦 + 𝑓 ∙ 𝑦 

Faults with a low intensity are the most difficult to detect. 
Therefore, we analyzed intensities in the range between 
0.01 and 0.1. 

For the analysis, we count the number of faulty data 
points that were actually detected as such and calculate the 
true-positive rate (TPR). For each fault type and intensity, 
multiple scenarios at different onsets and data sets were 
examined and summed to produce one result. For abrupt 
faults, the results for the two different data selection 
criteria are shown in Figure 2. The results for drifts are 
shown in Figure 3. In both figures, the increase in the true-
positive rate due to the use of the data selection criterion 
can be clearly observed. The greater the fault intensity, the 
larger is the improvement. In the best case, 50% more 
faulty data points were actually detected as such during 
data selection than during continuous updating. 

In summary, although less data is used for model fitting 
(about 10% is excluded from the data set), neither the 
performance in the fault-free case nor the rate of true 
positives decreases. 

 

Fig. 2. True positive rate for abrupt faults 

 

Fig. 3. True positive rate for drifts 
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 V. CONCLUSIONS AND OUTLOOK 

Online adaptation of models used for fault detection is 
inevitable on research engine test beds. The selection of 
data with the reformulated statistic as a criterion leads to a 
significant increase in the performance of the fault 
detection method. Furthermore, fewer updates of the 
model are required. The result is an adaptive method that 
has more stability due to the fact that only selected data are 
used for model building. 

Nevertheless, linear regression models are the simplest 
way to describe the relationship between variables. Non-
linear dependencies and dynamic processes are more 
common in practice. The models and the distance measure 
must account for both cases. Consequently, the new 
statistic must be defined for a broader range of data 
situations and thus models. A key assumption of the shown 
methodology concerns the distribution of the data. In 
practice, the Gaussian distribution is not the normal case. 
It must be analyzed how this fact affects the distribution of 
the new statistic and thus the data selection procedure. A 
new definition of the threshold for the criterion may 
become necessary. 
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