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Abstract – Thin glass is applied in numerous 

applications, appearing as three-dimensional 

smartphone covers, displays, and in thin batteries. 

Nonisothermal glass molding has been developed as a 

hot forming technology that enables to fulfil demands 

of high quality yet low-cost production. However, 

finding optimal parameters to a new product variant 

or glass material is highly demanding. Accordingly, 

manufacturers are striving for efficient and agile 

solutions that enable quick adaptations to the process. 

In this work, we demonstrate that machine learning 

(ML) can be utilized as a robust and reliable approach. 

ML-models capable of predicting form shapes of thin 

glass produced by vacuum-assisted glass molding were 

developed. Three types of input data were considered: 

set parameters, sensor values as time series, and 

thermographic in-process images of products. 

Different ML-algorithms were implemented, 

evaluated, and compared to reveal random forest and 

gradient boosting regressors as best performing on the 

first frame of the thermographic images.  
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 I. INTRODUCTION 

Thin glass is finding its way more and more often into 

numerous applications, particularly appearing in 

automotive and electronics industries in recent years. 

Three-dimensional (3D) smartphones, displays, and thin 

batteries require curved thin glass covers [1]. Concept cars 

of the future are pursuing thin glass as alternative material 

solutions to increase fuel efficiency by reducing the weight 

of automobiles, and for autonomous and connected 

mobility [2]. Although thin glass products promise 

lucrative opportunities, glass manufacturers are still 

struggling to meet the ever-increasing demands of glass 

processing towards complex 3D curved shapes, ultra 

precise surface finishes, high form accuracy, yet low-cost 

production [3]. Over the years, the fulfilment of the 

technical specifications in the manufacture of glass 

products was mainly achieved using serial machining steps 

consisting of grinding and polishing [4]. However, 

manufacturers fail to fabricate thin glass components with 

this technique due to the mandatory mechanical clamping 

that commonly leads to glass breakage. For machining thin 

glass components, grinding and polishing steps remove a 

lot of raw material, causing a large amount of material 

waste, high energy consumption, and long processing 

times. Therefore, the conventional grinding and polishing 

processes are not feasible for mass producing thin glass. 

In recent years, the so-called Nonisothermal Glass 

Molding (NGM) process has been developed, allowing the 

fulfilment of technical specifications in terms of complex 

shapes (e.g., freeform) and precision requirements while 

enabling low-cost products. NGM is a replicative 

manufacturing process based on the nonisothermal 

concept, i.e., the temperatures of glass and molding tools 

are different. The NGM process has demonstrated itself a 

viable technology for the cost-efficient production, where 

time required for producing a molded glass lens takes only 

up to a few seconds [5]. In order to enable thin glass 

molding, further technological enhancement has been 

achieved by incorporating vacuum during the hot forming 

process [6]. The so-called vacuum-assisted thin glass 

molding process further promises an innovative method 

for producing thin glass components with increasing shape 

complexity and form accuracy in a cost-efficient manner. 

One of the key challenges for the glass optic 

manufacturers is the prerequisite of parameters that enable 

the NGM process to satisfy the high form accuracy of glass 

products (typically below two-digit micrometers) and to 

minimize the cycle time. In fact, the NGM process consists 
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of three general stages, which are heating, molding, and 

cooling, each characterized by multiple process 

parameters. The parameters are highly interdependent 

making the optimization of the NGM process extremely 

challenging. Traditional trial-and-error approaches to 

determine optimal parameters require many iterative 

experiments. To reduce the number of experiments and its 

associated costs, process optimization is conducted using 

numerical simulations. Nevertheless, simulation accuracy 

greatly depends on the modeling of glass material 

behaviors, which proves to be complex at the molding 

temperature due to its thermo-viscoelastic response [7]. 

The calibration of unknown parameters for process 

modeling such as heat transfer coefficients during heating 

and molding, or structural shrinkage behaviors of glass 

during cooling are additional challenges [8]. Furthermore, 

these factors are not universal, meaning that the calibration 

process needs to be repeated with respect to any change of 

molding conditions or glass materials. 

Accordingly, glass optic manufacturers are striving for 

a more efficient and agile solution that can be used to 

quickly adapt the molding process to a new product 

variant, such as a new shape design, or a change in glass 

material for the same product design. In this paper, we 

demonstrate that machine learning (ML) can be utilized as 

a robust and reliable approach for accelerating the process 

development and production ramp-up phases in glass optic 

manufacturing. It has been shown that ML for optimizing 

processes with the help of predictive quality models 

achieves good results for a wide range of production 

processes [9,10]. However, apart from [3,11,12], no ML 

models for predicting quality have been presented in the 

literature for the NGM process. We demonstrate the 

prediction quality of ML-Models capable of predicting 

form shapes of thin glass produced by vacuum-assisted 

glass molding by using different types of input data. Image 

data from a thermographic camera, time series data from 

machine sensors, and machine control parameters are used 

individually. 

 

 

 II. EXPERIMENTAL DETAILS 

For this study, we selected a simple glass mirror as the 

demonstration product. The glass thickness was chosen as 

0.7 mm and 2.0 mm, which are common standard 

thicknesses. We conducted 128 experiments in total based 

on combining all possible changes of input process 

parameters. The resulting ML-Models were built for 

predicting the form shape of the second demonstrator – a 

head-up-display – which is a common interior component 

of today’s automobiles. The experimental procedure and 

setup of the used forming machine, mold holder unit and 

mold are presented in the following. 

 A. Experimental Procedure 

The glass molding process requires the heating of the 

glass preform until it reaches a sufficiently low viscosity. 

Once this condition is met, glass can be formed into the 

molding tool by help of mechanical forces. In the context 

of vacuum-assisted slumping the used mechanical force is 

a negative pressure between glass specimen and mold 

cavity. The process chain of the experimental procedure is 

shown in the top half of Figure 1. The process starts with 

the loading of a glass preform onto the molding tool. 

Subsequently, the molding tool and glass preform are 

moved into the furnace by X-axis and Z-axis movement, 

where they are exposed to radiant heat. During the 

homogenizing phase a stable temperature distribution 

within mold tool and glass is reached. Afterwards the 

molding tool and glass are moved out of the heating 

furnace and forming is conducted. During the forming step 

a proportional valve is opened to alter the intensity of the 

vacuum pressure. This process is controlled and monitored 

by flow meters and pressure sensors. Subsequently, the 

glass is cooled rapidly on the mold tool below the glass 

transformation temperature and then unloaded. The final 

process step is annealing, performed in an external furnace 

in order to release the internal stress developed within the 

molded glass during the forming step.  

The process can be regarded as a black box with limited 

visual observability - especially during heating, 

Fig. 1. Vacuum-assisted thin glass molding process chain variant of the (NGM) process 
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homogenizing, and forming within the furnace. For this 

reason, both mold and glass temperatures are measured 

with the help of a thermo-camera and pyrometer after the 

loading and before annealing. Additionally, 

thermocouples, flow meter and pressure sensors were 

fitted to the machine. The furnace set temperature and the 

heating time are assumed to be highly significant due to 

the extensive experience gained from pressing processes 

conducted in the past [5]. Based on temperature calibration 

measurements inside the furnace, a non-systematic error of 

the furnace’s actual temperature in the range of +/-20 °C 

has been investigated. For this reason, the range of 

temperature was set rather high at 100 °C to reduce the 

impact of noise in respect to the range. The mean 

temperature of 900 °C was defined based on previously 

conducted pretest and simulative studies. The mean 

heating time was set to 130 s, as it is believed that the 

temperature profile within glass and mold would have 

reached a quasistatic state. This was later confirmed by 

simulative investigations. 

Furthermore, the vacuum duration and the opening 

degree of the proportional valve are assumed to be 

significant, since the stresses and their time courses are 

part of the Maxwell equation, which is used to describe the 

viscoelastic material behavior of glass [13]. With the 

defined studying range of the opening angle of the 

proportional valve, a negative pressure ranging from 0 up 

to 300 mbar was investigated.  

All parameters were systematically varied and 

investigated in a centrally composed experimental design 

using RSM (Response Surface Methodology). During the 

experiments the parameters were systematically changed 

with two repitions each, as shown in Table 1. 

Table 1. Set Parameters 

Parameter Range Increment 

Furnace temperature 900 °C +/- 50 °C 25 °C 

Heating time 130 s +/- 20 s 10 s 

Vacuum duration 7.5 s +/- 2.5 s 1.25 s 

Opening angle of 

proportional valve 

10% +/- 10% 5 % 

Glass thickness 0.7 mm / 2.0 mm - 

 B. Forming Machine 

A glass press is used for the tests. The basic structure 

of the machine is made up of three pillars which, together 

with a traverse, form the press frame. This machine is 

characterized by a high degree of flexibility since all axes 

of motion and heating devices can be programmed 

independently. The lower linear axis X1 and the lower 

vertical axis Z1 are used to generate the motion sequences 

required for the tests. The Fraunhofer IPT made extensive 

modifications to the machine, one of which was the 

addition of a fully automated solution for recording all 

sensor and actuator signals [12]. Furthermore, extensions 

were made to the machine with regard to vacuum 

technology, as well as enabling bending and deep-drawing 

processes. 

 C. Forming Tool 

The mold, together with the heating equipment, is 

essential for carrying out the tests. It is mounted on a mold 

holder. The mold consists of a rotationally symmetrical 

base body. Due to the high operating temperatures, 

stainless steel resistant up to 700 °C was used for the mold 

material. The optical functional surface forms a spherical 

section with a radius of 150 mm and an opening diameter 

of 68.8 mm. The choice of this geometry ensures that the 

specimens can be evaluated after forming using a wide 

range of measuring equipment. In the center of the cavity 

there is a micro-eroded hole through which a vacuum can 

be established under the glass. Furthermore, it is believed 

that by using a single vacuum bore as opposed to a 

plurality of vacuum bores, the first-order shape error is 

larger and therefore can be more easily detected by 

measurements.  

Type K thermocouples are used for thermal 

measurement of the mold and are placed closely to the 

optical surface of the mold tool. The vacuum in the mold 

is created by means of an ejector and can be systematically 

changed with the help of a proportional valve. The quality 

of the vacuum is monitored by a pressure sensor and two 

flow meters with different measuring ranges. 

 D. Heating Devices 

The main heating device is a so-called furnace room. 

This is a body closed from five sides, heating the inner 

compartment. The temperature distribution of the heating 

chamber is of great importance for process development 

and for defining the limits of the test parameters. 

 III. DESCRIPTION OF THE METHOD 

The methodological approach is strongly oriented 

towards [14] and is further inspired by the process steps 

defined in the CRISP-DM [15]. First, the input data - set 

parameters, sensor data, image data - are collected from 

the various sources and integrated. In addition, the target 

data - form shape measurements - are recorded and 

processed. These are then pre-processed so that a high-

quality database can be optimally used for the subsequent 

training, validation and testing of the models. For the 

models, the selection of ML algorithms focusses on 

regression learning algorithms to predict the form shape. 

Finally, the models are evaluated and compared with each 

other. In the following, the detailed steps of model building 

for the three different inputs are listed. 
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 A. Data Acquisition and Integration 

During the forming experiments, three types of 

production data were collected and used as inputs to the 

machine learning model. The first data type comprised of 

set parameters, which were the values predefined before 

each experiment and controlled by the machine settings 

during the forming process. A total of five different 

constant or scalar parameters were recorded (see Table 1). 

In contrast, the second type was the real-time measuring 

data recorded by 114 sensors equipped within the molding 

machine. Such types of time-series inputs were expected 

to provide more details of the machine- and process 

behaviors throughout the entire experiment so that impacts 

on the form accuracy of the molded glass can be observed 

clearly. The sensor data was extracted from the machine 

with an individual sampling frequency between 1 Hz to 25 

Hz and stored within a database. The third type is the 

image data collected in process from a thermographic 

camera. A video sequence of 300 frames corresponding to 

10 seconds of recording time was carried out to gain the 

surface temperature of glass and mold components for 

each experiment. Figure 2 shows an example of an image 

frame recorded at the start of the video sequence.  

Fig.2. First frame recorded by the thermographic camera 

The target data refers to the final shape used to quantify 

the form accuracy of the molded glass components. The 

molded glass components were measured on the side 

facing the molding tool at the end of the forming process. 

A tactile form profilometer from Taylor Hobson was used 

to measure the glass shape. The acquired data, which was 

integrated into a single database. In the database the 

experimental meta data is used to structure the information 

and to ensure the traceability of the hot formed samples to 

the production data. 

 B. Data Preprocessing 

The methodology for a data preprocessing pipeline 

proposed by [16] was followed. Goal of the data 

preprocessing was to gain a dataset with high data quality. 

Hence, time series data as well as image data needed 

extensive preprocessing and feature extraction. 

First, the input data was extracted from the database 

into .csv files for preprocessing. The set parameters needed 

the least preprocessing since the scalar values were 

without error after checking their initial data quality. For 

integration with a machine learning algorithm’s data 

loading stage, the set parameter table was restructured.  

In contrast, the data quality check of the time series 

data revealed that the sensor data needed more 

preprocessing. First, data from inactive sensors were 

removed, leaving the following complications: 

The time stamps were recorded independently for the 

sensors. Synchronization between the sensors was 

performed. Furthermore, due to complications with the 

machine controls, the sampling frequency of the sensor 

values was not constant. However, the amount of recorded 

data points was correct. Therefore, a rearrangement of the 

data points according to its respective sampling frequency 

was performed. Since the sensors had different sampling 

frequencies, missing values of sensors with lower 

frequency were filled using interpolation. This might 

generate noise in the data or interfere with relevant process 

information. Additionally, data from certain process steps 

like loading were irrelevant for the analysis. For instance, 

the pressure and flow sensors recorded useful information 

only after the glass deformation started, otherwise 

containing only noise. This data cannot be integrated with 

data from sensors, which record useful information across 

a wider range of stages, for example the temperature 

sensors. Finally, errors in values were individually 

removed that were caused by defective sensors. The 

removed values were replaced by interpolation. 

Moreover, to utilize the sensor data efficiently and the 

consequent computational resources, feature extraction 

was applied in the next step. It is essential to infer which 

parts of the time-series data may contain significant 

impacts on the product quality, and to break down the 

time-series into a set of scalar features.  

Finally, to make the image data from the 

thermographic camera usable for regression algorithms, 

the data was preprocessed, and features were extracted. 

First, an edge detection algorithm was applied to find the 

circular edges of the glass specimen in the image. The 

temperature profile vectors along the diameter of the glass 

were then calculated for each experiment and reduced to a 

length of 100 points by cubic spline interpolation. 

The target data was obtained using the profilometer. A 

needle of the measuring device passes through a calibrated 

direction of the diameter of the glass. The measurement is 

then repeated along a perpendicular diameter by rotating 

the measuring bed by 90 degrees. Hence, for each 

experiment, two form vectors, each comprising of 69,000 

datapoints are available. Preprocessing was performed to 

trim irrelevant data points from the edges, level the 

measurement by rotating, and reduce the datapoints to a 

manageable (regarding processing time) amount of 30. 

The rotation symmetry was established by computing the 

absolute Peak-to-Valley (PV) errors between the mold 

shape and each of the form profiles, as well as within the 
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two profile measurements. 

 C. Selection of Suitable Machine Learning Algorithms 

The selection of suitable algorithms for predicting the 

form shape was narrowed down to regression algorithms. 

A preselection was made based on reviews in the literature 

[17], the data at hand and similar previously conducted use 

cases. Linear regression and decision trees were chosen 

due to their simplicity and interpretability. Random forest 

and gradient boosting machines due to their performance. 

 D. Implementation of Machine Learning Algorithms 

First and foremost, the three data types were split into 

train, validation, and test sets. A split of 80 % for the 

training and 20 % for testing and validation was used. 

From the image data, only the first and last camera frame 

were used and preprocessed into a temperature profile 

vector. To predict the glass shape, multiple gradient 

boosting regressors were implemented as single output 

regressors. The other stated algorithms were implemented 

as multiple output models. Permutation importance is used 

to determine the most useful features from the set of the 

input data. Model Evaluation 

The Root Mean Squared Error (RMSE) was considered 

to compute and quantify the quality of the selected 

machine learning models. Using a 5-fold forward chaining 

cross validation, the models for each data type are 

evaluated and subsequently compared. 

 IV. RESULTS AND DISCUSSIONS 

Table 2 shows the RMSE values for the 

implementations of the four ML-algorithms on the test sets 

of the three different types of input data.  

Table 2. RMSE values of tests results for algorithms trained on 

input data  

The findings show that the image data from the first 

frame holds most relevance when predicting the molded 

glass shape. This can be explained by the lowest values of 

0.95 RMSE obtained from the random forest and gradient 

boosting regressor algorithms. Secondly, it can be 

observed that simple algorithms like linear regression and 

decision trees better capture information from simpler data 

(set parameters, sensor data) compared to complex input 

data (temperature profile vectors). On the other hand, for 

ensemble algorithms, the image data from the first camera 

frame helps derive better information on relationships 

between input and output compared to the use of set 

parameter features. The temperature profile captured in the 

last camera frame, has lost some information about the 

process since the mold part and the deformed glass parts 

have undergone a period of cooling. Hence, while it still 

makes decent predictions, the accuracy seldom matches 

those made using the first camera frame. Overall, the best 

average RMSE across algorithms was achieved with the 

time series data of the sensors.  

An important observation is the range in which the 

RMSE varies. It is observed that most error converges 

around a value of 1.0. An RMSE of 1.0 corresponds to a 

form shape predicted over the normalized range from 0 to 

50 (equivalent to 5 mm of the actual measure part), each 

point on the form is deviated from the actual form profile 

by an average of 1 unit, or 0.1mm. Process experts 

determined that a threshold of 1.0 RMSE or less 

constitutes a useful prediction for optimizing process 

parameters and thus comply as good predictions. 

Analyzing differences between the input data types, it 

is evident that the information contained in the set 

parameter data is insufficient to predict the shape 

according to the requirements. The training and validation 

curves do not fully converge, indicating a requirement of 

additional data for the algorithms to converge to an 

optimized bias and variance level. The sensor data 

recorded as time series data throughout the experiments 

shows good convergence and results. This is in part due to 

the additional information of the sensor data from the 

conditions of the environment of the experiment, e.g., 

influences on the temperatures from small wind surges in 

the production facility. Hence, using time-series data 

compared to set parameter data leads to predictions with 

higher accuracy.  

A closer look at the learning curve for the best 

performing overall model in Figure 2 reveals the least 

overfitting tendencies as seen by a lower gap between the 

curves compared toother algorithms. 

Fig. 2. Learning curve of random forest on first camera frame 

data 

Algorithm Set 

para-

meter 

Sensor 

data 

First 

frame 

Last 

frame 

Linear 

regression 

1.12 1.13 1.80 2.06 

Decision tree 1.17 1.06 1.11 1.10 

Random forest 1.12 1.01 0.95 1.07 

Gradient 

boosting 

regressor 

1.09 1.01 0.95 0.96 
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 It is also noteworthy that no more than 40 images are 

necessary for RF to capture the information relating image 

data to the shape. After this saturation, the model shows a 

low bias error and the prediction accuracy, as seen by the 

end value of the validation error, is well within the defined 

threshold. Hence, RF is a reliable predictor when using 

image data from the first frame. 

 V. CONCLUSIONS AND OUTLOOK 

Over the years, a large amount of process data was 

collected by glass manufacturers. In this context, the use 

of ML to solve existing challenges in the process 

development is of interest, as good results have been 

achieved in other production domains.  

In this paper we demonstrated the prediction quality of 

ML-models predicting final shapes of thin glass produced 

by vacuum-assisted glass molding, using three types of 

input data. The image data from a thermographic camera, 

time series data from machine sensors, and machine 

control parameters were considered in this study. After 

data preprocessing and feature extraction, four algorithms 

– linear regression, decision tree, random forest, and 

gradient boosting regressor – were trained, validated, and 

tested. The best results were achieved by the random forest 

and gradient boosting regressors on the first frame of the 

thermographic images with an RMSE of 0.95. Overall, the 

sensor data enabled the best average RMSE values across 

all algorithms implemented.  

Excellent prediction accuracy observed for both glass 

demonstrators by this study highlights the successful 

implementation of ML allowing industrial manufacturers 

to accelerate the process development. Using the 

predictions of the ML-models enables adjustments of 

process parameters manually or in an automated manner. 

In addition, the procedure and methods shown here can be 

transferred to other glass forming processes. Examples are 

primary forming in e.g., container glass and optics 

production, as well as secondary forming in e.g., modling 

of bulk glass for lens production.  

In the future, improvements to the study can be made 

by implementing algorithms for multi target regression 

since correlation between targets in the implementations 

presented here, is not learned. Image analysis may also be 

further investigated by using deep learning algorithms on 

the raw image. Multimodal models may make use of all 

the data shown here in one single model to investigate 

dependencies between data types. Finally, the developed 

models may be used in conjunction with process parameter 

optimization techniques. 
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