
18th IMEKO TC10 Conference
“Measurement for Diagnostics, Optimisation and Control to Support Sustainability and Resilience”
Warsaw, Poland, September 26–27, 2022

Card Level Management Solution for the
BRAINE edge framework

Balázs Scherer

Department of Measurement and Information Systems
Budapest University of Technology and Economics

Budapest, Hungary
scherer@mit.bme.hu

+36 1 463-2066

Abstract – The objective of the BRAINE (Big data
pRocessing and Artificial Intelligence at the Network
Edge) project is to boost the development of an Edge
framework focusing on energy efficient hardware and
AI empowered software, capable of processing Big
Data at the Edge, supporting security, data privacy,
and sovereignty. The BRAINE’s Edge framework is
designed to be flexible and support many types of data
processing and storage cards. Because of this flexibility
and the wide range of heterogeneous cards a
sophisticated low-level board/card management
functionality is needed. The board management
architecture of BRAINE is a hierarchical design, which
consists of a central board management node (BMC:
Board Management Controller) and a distributed low-
level board management hardware present on all the
nodes (BMMC: Board Management MicroController).
This paper describes the functionalities and presents
implementation details of the low-level board
management controller the BMMC.

Keywords – Diagnostics, Edge framework, Board
Management, Ethernet over USB, Big Data Processing,
AI on the edge.

 I. INTRODUCTION

The goal of the Edge framework of BRAINE [1] is to
leave behind cloud computing and place the intelligence
for processing data closer to the sources. This offers many
technical advantages, such as reduced latency, secure
decentralized processing and storage, scalability at lower
complexity, versatility to adapt the nodes to the underlying
application to be serviced, etc... The Edge computing
power of the BRAINE framework can dramatically boost
services and applications by supporting artificial
intelligence (AI) natively, instead of relying on AI in the
cloud. Edge computing supporting AI (without cloud
intervention) is the only technology that will enable many
of the long-awaited game changers: Factory 4.0 and smart
manufacturing, 5G, Internet-of-things, self-driving

vehicles, remote robotics for healthcare, machine vision,
among others.

To introducing AI to edge computing a specific
hardware needs to be designed with big data processing
and AI in mind. The BRAINE project’s overall aim is to
boost the development of such Edge frameworks and
provide an example for such a framework.

 II. THE BRAINE EDGE MICRO DATA CENTER

The development of the BRAINE Edge Micro Data
Center is a complex project containing many sub projects
(16 hardware topics and 18 software topics are identified).
The hardware part consists of a design of a modular multi
slot card holder, with sophisticated cooling features to
ensure the operation of high powered computing cards
(150W of possible power pro card, resulting an overall of
a 1.5kW of backplane power for an 8 slot system), the
cards are using the standard 3U rack size, with variable
depth and they are individually replaceable or
reconfigurable. A plan of the BRAINE Edge Micro Data
Center physical layout is shown on Figure 1.

Fig. 1. A plan of an 8 slot BRAINE Edge Micro Data Center [2]

For data connection the BRAINE Edge Micro Data
Center is using a Dual layered switching: Both (10/25/
100G) Ethernet and PCIe Gen 4, shown on Figure 2.

8

18th IMEKO TC10 Conference
“Measurement for Diagnostics, Optimisation and Control to Support Sustainability and Resilience”
Warsaw, Poland, September 26–27, 2022

Fig. 2. Architecture of the BRAINE Edge Micro Data Center [2]

As described above, Edge framework designed during
the Braine project must be flexible and support many types
of data processing and storage cards. The so called
Compute node slots (there are 8 of such slots in the current
architecture represented as Node X on Figure 2), can
support the following card options:

COMe CPU card: Support ComExpress Type VII CPU

modules or AMD (EPYC) or Intel (Xeon D) modules. It
has at least 64 GByte memory, and on-board NVMe
storage. It has minimum 2x10 G Ethernet interface, and a
minimum of x8 Gen3 PCIe connection.

GPU card: Support Xavier AGX (32GB) AI SoC

module with 512-Core Volta GPU Tensor Core, and 8-
Core ARM v8.2 64-Bit CPU. It also has NVMe storage
and at 32 GB of system memory. It provides at least an
8xGen3 PCIe host interface and a 2x 10 G (25 G) Ethernet
interface.

NVMe card: Provides storage capacity of at least 8

TB/card capacity and at least 8x Gen 3 PCIe host interface.

ARM card: It should provide a power efficient

processing capability. It is currently under specification.

FPGA card: It is intended to provide a highly flexible

reconfigurable hardware acceleration. It is currently under
specification.

Currently there are working prototypes of the COMe CPU
card and the GPU card, the other card types are under
development or manufacturing.

Because of this flexibility and the wide range of

heterogeneous cards shown above a sophisticated and
hierarchical low level card management functionality is
needed.

This hierarchical management design consists of a
central board management node (BMC: Board
Management Controller) shown on Figure 2., and a
distributed low-level board management hardware present

on all the nodes (BMMC: Board Management
MicroController). The goal of this paper is to describe the
functionalities and present implementation details of the
low-level board management controller the BMMC of the
BRAINE Edge Micro Data Center framework. Details of
the BMC (Board Management Controller) functionality
will be included in a separate paper.

 III. FUNCTIONALITY OF THE BMMC

The main goal of the BMMC is to support the operation
of its Compute node slot card (COMe CPU card, GPU card
etc.), and provide management interface functionality to
the card for the BMC.

The functionalities of the BMMC can be divided to two
parts: the first part contains the Common functionality
which is same for every Compute node slot card of the
BRAINE Edge Micro Data Center framework. The second
part is the Card specific functionality, which is needed
because of the heterogeneous cards supported by the
firmware.

The Common functionality of the BMMC include the

following:

 Providing communication interface to the higher-

level Board Management (BMC)
 Node startup management: power supply

enabling and switching (the functionality is card
independent, but the execution is card dependent)

 Temperature monitoring
 Current consumption monitoring
 Handling of the TPM (Trusted Platform Module)

chip of the board
 Providing debug interface for the card’s

computation unit during the development. This
has card dependent parts, but every computation
module has some kind of debug feature, usually
an UART like interface which need to be
redirected to the BMC.

The Card specific functionality, of the BMMC as it is

included in its name highly depends on the given card. For
example, such functionality can be the HDMI interface
management for the NVIDIA GPU card.

 IV. HARDWARE OF THE BMMC

The BMMC is based on a low-cost, low-power
microcontroller, the STM32L4R5VGT6. Figure 3. shows
the high-level block diagram of the microcontroller.

The selected microcontroller has a wide range of
peripherals (I2C, SPI, UART, USB), up to 16 analog and
up to 81 digital pins, so it offers the necessary connectivity
to be used as a management device. The high clock
frequency (120 MHz), the large flash (1 MB) and RAM
size (640 kB) allows the implementation of complex and

9

18th IMEKO TC10 Conference
“Measurement for Diagnostics, Optimisation and Control to Support Sustainability and Resilience”
Warsaw, Poland, September 26–27, 2022

high-speed communication protocols like USB CDC
Ethernet and TCP-IP based on it. It was also beneficial that
a NUCLEO-L4R5ZI development board is available for
this processor series, so that software development can
begin long before the actual hardware panels are
manufactured. This was critical because of the current chip
crisis, which caused delays in hardware production.

Fig. 3. Internal architecture of the Board Management
Microcontroller [3]

An example for the real hardware a CPU Node with
AMD EPYC, Xeon D module integrating a BMMC
module is shown on Figure 4.

Fig. 4. Manufactured CPU Node

The CPU card is supplemented with a debugger PCB
enabling its development. This debugger PCB can be seen
on the upper side of the picture together with the external
debugger enabling the software development of the
STM32L4R5VGT6 microcontroller. At the bottom of the
picture the card interface connector is visible, with a
development connector which can give power supply to
the card and enables the simulation and testing of the USB
communication between the BMMC and the BMC.

 V. SOFTWARE ARCHITECTURE OF THE BMMC

The software of the BMMC has a layered architecture
according to the industrial trends (Figure 5). This software
architecture consists of the following main layers and
blocks.

 A. Manufacturers SW Library:

The software architecture of the BMMC is based on the
microcontroller vendor’s firmware library, the ST Cube.
ST Cube HAL [4]: The ST cube provides high level APIs
the so-called HAL (Hardware Abstraction Layers), which
can be generated using a graphical configuration system
the ST Cube Mx. This high-level APIs can provide great
functionalities, but the high-level approach also has many
drawbacks (like common event handling of peripheral
blocks, etc.). ST Cube LL: Besides the high-level APIs the
ST also provide a low-level library called ST Cube LL,
which can be useful to separate and encapsulate some
functionalities of the system.

 B. MCU level API

The MCU level API layer provides the BMMC
hardware based peripheral configurations, including
peripheral property setups and microcontroller PIN
specifications. This layer has two parts, the Common
driver configuration, and the Card Specific I/O.

The Common driver configuration is based on the ST
Cube software stack and provides a microcontroller
independent abstraction for the main common peripherals.
Its purpose is to provide an API for handling the common
peripherals of all BMMCs. These common peripherals are
providing the interface to the BMC, the TPM chip, the
power controls and the BMMC debug. This software part
is not subject to any change if a new BMMC type is
developed.

The Card Specific I/O abstraction implements the
BMMC type specific peripheral handlings.

 C. Board Level API

The purpose of the board level API is to provide a
function support layer to the application based on the
peripheral interfaces. The common functionality block of
the Board Level API integrates the BMMC’s card
independent functionality, like BMMC - BMC
communication management, power setups, temperature
monitoring and TPM chip function interface. The card
level functionality is the BMMC card dependent part
providing card specific boot procedures and other card
specific measurements and setups. The Communication
part consists of the Ethernet over USB communication
(CDC Ethernet) support and USB DFU (Device Firmware
Update) based Firmware update support for the BMMC
itself.

10

18th IMEKO TC10 Conference
“Measurement for Diagnostics, Optimisation and Control to Support Sustainability and Resilience”
Warsaw, Poland, September 26–27, 2022

Fig. 5. Software architecture of the Board Management Microcontroller

 D. Multitasking support

 The complex BMMC functionality requires
multitasking: TCP-IP communication, data acquisition,
Google Protocol buffer server functionality, UART over
TCP bridge etc. need their own threads. This multitasking
functionality is supported by the FreeRTOS kernel [5]. To
provide future compatibility we use the FreeRTOS kernel
through the CMSIS-OS API abstraction.

 E. Application Software

The application software consists of three separate
parts, the Google Protocol buffer server tasks, the
standalone monitoring task, and the UART over TCP
bridge functionality.

The Google Protocol buffer server [6] is used to
provide an easily extendable, high abstraction level,
command-based interface for managing the BRAINE card.
The Google Protocol buffer uses a language-neutral,
platform-neutral, description for the possible
communication messages in a client server
communication. By using this abstract description, the
communication message encoding and processing can be
generated automatically for the BMMC microcontroller
and the BMC side (using Linux) too. After the code
generation only the hardware specific part needs to be
handwritten, therefore this approach provides a highly
extendable command interface.

The Standalone monitoring task performs the data
acquisitions needed by the card management. This task
provides the data for the Google Protocol buffer based
communication.

The UART over TCP bridge functionality is used to

provide a debug interface for the card’s main computation
unit. For example, for the “CPU” card the main CPU-s
UART console is connected through this bridge to the
BMC, which can make this console remotely accessible.

 VI. BMC – BMMC COMMUNICATION

The most complex part of the BMMC containing many
novelties is the communication between the BMC and the
BMMC.

 A. CDC Ethernet

The CDC Ethernet USB class was selected to
implement communication between the BMC and BMMC.
This choice has several advantages from the BMC’s Linux
point of view: on the one hand, since CDC Ethernet is an
existing, widely known USB device class, so it does not
require individual driver development. On the other hand,
since it sees the connected device through the Linux
Ethernet interface, the TCP/IP protocol suite support such
as TCP sockets can be used, and thus there is no need to
deal with the development of low-level communication
protocols.

However, from the side of the STM32L4R5VGT6
microcontroller, this implementation requires significantly
more complicated development. The STM32 Cube system
has CDC (Communication Device Class) device support,
but it only includes a ready solution for VCP (Virtual Com
Port) communication. Therefore, for the CDC Ethernet
solution, it is necessary to prepare the corresponding USB
description files, as well as to manage the special control /
setup commands and functions, and to ensure the data
transfer. For this otherwise very complicated part, we use
a sample unofficially supported by STMicroelectronics as

11

18th IMEKO TC10 Conference
“Measurement for Diagnostics, Optimisation and Control to Support Sustainability and Resilience”
Warsaw, Poland, September 26–27, 2022

a framework, and we have expanded it further.
The choice of communication over Ethernet also

means that we must also provide TCP/IP support on the
STM32L4R5VGT6 microcontroller side. For this,
STMicroelectronics proposes and integrates the LwIP
protocolstack implementation into the CubeIDE
environment. LwIP (LightWeight IP) is a popular TCP/IP
protocol stack used in microcontroller environments,
which supports low-level transport layer protocols such as
UDP and TCP, as well as some application layer protocols
such as TFTP, http server, SNMP. In our case, the LwIP
support provided for CubeIDE can only be used to a
limited extent, because STMicroelectronics provides an
example of its simple use only through the Ethernet
peripheral of microcontrollers. To use this protocol stack
over USB, a so-called network interface is needed, which
implements the sending and receiving of TCP/IP packets
via the CDC Ethernet interface.

Fig. 6. CDC Ethernet communication between the BMC and
BMMC

Communication based on the CDC Ethernet interface
is partly difficult because the STM32L4R5VGT6
microcontroller (BMMC) must show itself as an Ethernet
card to the Linux operating system (BMC) with its own
Ethernet address and Ethernet-related packet filter and link
management capabilities, and on the other hand, it must
also function as a TCP/IP node. The details of this
relationship are presented in Figure 6.

 B. DHCP support

It is important for BMMC connected to BMC Linux to
have a unique IP address to implement / emulate TCP/IP
communication. It is advisable to implement this unique
address in way, when the BMC Linux recognize the
BMMC as USB CDC Ethernet card, then it start using the
DHCP (Dynamic Host Configuration Protocol) server
protocol to give a unique IP address to the connected
BMMC. This implementation has been done using the
LwIP’s DHCP client functionality.

 C. Google Protocol buffer server

High-level control and management communication
between BMC and BMMC is provided through the Google
Protocol buffer command serialization and interpretation
framework. The Google Protocol buffer framework is able
to format messages containing concise binary information
from commands specified in a .proto file with special
syntax, and can interpret responses also specified in
a .proto file from binary response messages. An example
for such a .proto file part is presented in Figure 7.

Fig. 7. Google Protocol buffer .proto file example

Binary Protocol buffer messages in BMC – BMMC
communication’s case are embedded in a TCP stream
(TCP port 6000) and supplemented with a simple framing.
The simple framing is needed, because the Protocol buffer
interpreter itself does not have protection against
"slipping" of commands, so if for some reason the message
does not start at the beginning of the command, the
interpretation cannot encode it.

The Protocol buffer server created on the BMMC runs
in a separate thread. Figure 7. illustrates the relationship
between the Protocol buffer thread and its environment.

Fig. 8. Google Protocol buffer server in the BMMC software
architecture

As shown in the Figure 8., the server thread reads the
continuously monitored data collected by the Standalone
monitoring thread, as well as the static information, such
as the version number of the BMMC software and the
unique identifier of the microcontroller, from a data table.

12

18th IMEKO TC10 Conference
“Measurement for Diagnostics, Optimisation and Control to Support Sustainability and Resilience”
Warsaw, Poland, September 26–27, 2022

Therefore, during frequent data collection requests, there
is no low level communication which delays the response.
At the same time, in the case of the command arriving for
example for the power supply control functions, since the
successful or unsuccessful execution is immediately
indicated in the response of the command, the Protocol
buffer server thread directly accesses the card-level API
and executes the necessary commands.

The set of commands transferred in the Protocol buffer
is under continuous development, currently the most
necessary commands are supported by the BMMC like
power up and down, read BMMC software version, read
card temperature, and power consumption etc.; but the
environment can be expanded very quickly with new
commands thanks to the generation of the command
interpreter based on the .proto file. A sample Linux based
test of BMMC’s protocol buffer communication can be
seen on Figure 9.

Fig. 9. Sample Protocol buffer communication during BMMC
software test

 VII. CONCLUSIONS

This paper has presented the goals of the BRAINE Big
data pRocessing andArtificial Intelligence at the Network
Edge project and its novel approach to provide high
performance computation power close to the final
application instead of the remote cloud. This approach can
provide infrastructure for many of the long-awaited game
changers: Factory 4.0 and smart manufacturing projects
like [7],[8],[9], 5G, Internet-of-things, self-driving
vehicles, remote robotics for healthcare, machine vision,
among others.

The paper described in details one of the key
components of this framework the BMMC module. Every
so called Compute node slot card encapsulates a BMMC
microcontroller, which is responsible for the low level card
functionality: monitoring and management. The paper
focused on the description of one of the main novelties of
the BMMC implementation: the communication method
between the BMC and the BMMC. The prototype
implementation of the BMMC functionality has
successfully been done.

 VIII. ACKNOWLEDGMENTS

This work was partly funded under the BRAINE
project (‘Edge computing and AI technology for big data
processing’- Horizon 2020 framework Grant Agreement
876967).

REFERENCES

[1] BRAINE Big data pRocessing andArtificial Intelligence
at the Network Edge: https://www.braine-project.eu/

[2] ECSEL Research and Innovation Action.: BRAINE - Big
data pRocessing and Artificial Intelligence at the Network
Edge, Second project report on the status of WP2. 10 April
2022.

[3] STMicroelectronics, STM32L4+ SERIES, Ultra-low-
power and more performance.
https://www.st.com/en/microcontrollers-
microprocessors/stm32l4r5vg.html

[4] STMicroelectronics, STM32CubeMX & CubeHAL Basics
MOOC (Massive Open Online Courses).
https://www.st.com/content/st_com/en/support/learning/st
m32-education/stm32-moocs/stm32cubemx-and-cubeHhal-
basics.html

[5] FreeRTOS™, Real-time operating system for
microcontrollers, https://www.freertos.org/

[6] Google Protocol Buffer, Developpers guide:
https://developers.google.com/protocol-
buffers/docs/overview

[7] Ildikó Bölkény: AI Based Detection of Gas Hydrate
Formation, 17th IMEKO TC 10 and EUROLAB Virtual
Conference “Global Trends in Testing, Diagnostics &
Inspection for 2030” October 20-22, 2020 pp.: 202-207

[8] Zsolt János Viharos, Richárd Jakab: Reinforcement
Learning for Statistical Process Control in Manufacturing,
17th IMEKO TC 10 and EUROLAB Virtual Conference
“Global Trends in Testing, Diagnostics & Inspection for
2030” October 20-22, 2020 pp.: 225-234

[9] Eckart Uhlmann, Julian Polte, Claudio Geisert:
Condition Monitoring Concept for Industrial Robots, 17th
IMEKO TC 10 and EUROLAB Virtual Conference “Global
Trends in Testing, Diagnostics & Inspection for 2030”
October 20-22, 2020 pp.: 253-257

13

