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Abstract – Industrial robots are used in production 

technology for a wide variety of tasks. The most 

frequently used type worldwide is the so-called vertical 

articulated arm robot, often designed with 5 or 6 axes. 

Due to their relative movement, the axes are 

tribological systems, they are subject to wear and tear 

and must be maintained regularly. An important aspect 

of maintenance is the inspection, which aims to assess 

the current state of wear and tear. This paper presents 

a concept for condition monitoring by means of self-

tests for industrial robots. The basis is formed by 

MEMS-based vibration sensors, which are mounted on 

the axis joints. The vibration signals acquired during 

the self-test are analyzed in an Edge Gateway and the 

condition is classified using methods from the field of 

machine learning. The result of the classification and 

the features used for it are then sent to a cloud platform 

where they can be further analyzed. With this 

approach, service calls can be planned in advance and 

unplanned downtimes avoided. The article concludes 

with a critical discussion of the advantages and 

disadvantages of the presented concept and gives an 

outlook on still open research questions. 
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 I. INTRODUCTION 

 A. Industrial Robots 

The history of industrial robots began more than 60 

years ago [1]. In 2018, worldwide more than 2.4 million 

industrial robot installations existed. The annual growth 

rate has been 19 % since 2013 [2].  Industrial robots are 

used in production technology for a wide variety of tasks, 

e.g. painting, welding, riveting, assembly or even 

machining [1, 3-5]. Their advantage in comparison to other 

automation solutions from the field of special machine 

construction is their great flexibility with regard to the area 

of application and the relatively simple programming by 

means of teaching. Numerous types of industrial robots 

exist, which differ in size, power and the number of 

degrees of freedom with respect to the kinematic chain. 

The most frequently used type worldwide is the so-called 

vertical articulated arm robot, often designed with 5 or 6 

axes. Due to their relative movement, the axes are 

tribological systems, they are subject to wear and tear and 

must be maintained regularly.  

 B. Maintenance 

Due to the increase in the capital value of machinery 

and the extensive expansion of production capacities, the 

importance of maintenance increased after the Second 

World War and new requirements arose. The new 

strategies focused on minimizing the risk of malfunctions 

by means of visual inspection and preventive replacement 

of damaged machine parts in order to reduce the cost of 

repair after a breakdown. With the beginning of the 1970s, 

the requirements for high reliability of production systems 

increased as automation grew and the failure of individual 

elements had a greater impact on the entire system than 

before. This led to a restructuring of maintenance 

operations with the aim of increasing the effectiveness and 

efficiency of the equipment in operation and reducing 

costs. Among other things, the concept of condition-based 

maintenance was developed with the aim of making 

optimum use of the remaining useful life without the risk 

of unplanned downtimes [6]. 

An important aspect of maintenance is the inspection, 

which aims to assess the current state of wear and tear. The 

automation of parts of the inspection process with a 

condition monitoring system enables the remaining useful 

life to be optimally exploited in an efficient way with the 

strategy of condition-based maintenance. Condition 

monitoring of feed axes using specially developed self-

tests is an established method for avoiding unplanned 

downtimes in machine tools since the early 2000s [7-8]. 
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Unfortunately, this has not been introduced in industrial 

robots in this way, although robots are also subject to wear 

and tear and high demands are placed on their technical 

availability [10]. 

 II. STATE OF THE ART 

Industrial robots represent highly stressed production 

systems and their wear-related breakdown can lead to long 

production downtimes and thus to high costs. Commonly, 

industrial robots are maintained at fixed time intervals, 

ranging from a daily inspection to 800 operating hours [9]. 

In practice, Condition Monitoring solutions to support 

Predictive Maintenance approaches are found only to a 

limited extent. They are rather subject to scientific 

considerations. The most commonly used raw data for 

condition monitoring is the motor current or vibrations. 

Statistical moments such as mean, variance, skewness and 

kurtosis are typically used for the extracted health 

indicators respectively features [10-14]. The approaches 

have in common that they focus on the development and 

evaluation of analytical algorithms. Among the applied 

methods, statistical methods and methods based on 

artificial intelligence respectively machine learning 

techniques predominate. Accurate physical models are 

hardly considered due to their complexity and lack of 

robustness in practice [11]. Only peripheral statements are 

made about the traverse movements of the robot axes 

during which data acquisition takes place. Jaber & Bicker 

state that each robot axis should move independently in a 

cyclic movement during data acquisition [12]. Holistic 

concepts for condition monitoring of industrial robots are 

still missing. Therefore, this paper presents such a holistic 

concept for condition monitoring for industrial robots by 

means of self-tests. 

 III. DESCRIPTION OF THE CONCEPT 

 C. Self-test Design 

Self-tests are commonly used to perform defined 

procedures under constant boundary conditions. This 

involves the acquisition of sensor data and their analysis 

with regard to the functionality to be tested. In the case of 

testing feed axes of machine tools, a self-test has become 

established, at which the axes are moved sequentially 

along the maximum possible traverse range at constant 

feed rate in both directions [7]. Fig. 1 shows a screenshot 

of the application developed at Fraunhofer IPK for the 

analysis of data from the use phase of machine tools. It 

shows the history of a feature extracted from the drive 

current data recorded during the performed self-tests. The 

period covered is approximately two years. It can be seen 

that the feature shows a clear upward trend about three 

months before the service visit to replace the feed axis 

became necessary. 

 

Fig. 1.  Development of a feature for monitoring feed drives 

over a period of approx. 2 years 

This procedure was adopted at Fraunhofer IPK for the 

development of a self-test for robot axes. For this purpose, 

it must be determined which maximum travel ranges the 

working area of the industrial robot allows. Then an 

appropriate robot program must be implemented, which 

moves the robot axes sequentially at constant speed. The 

sequential procedure is to ensure that the movements of the 

individual axes do not negatively influence the quality of 

the acquired data. When determining the travel speed, care 

should be taken to ensure that it is as high as possible in 

order not to unnecessarily prolong the non-productive time 

resulting from the self-test. On the other hand, it should be 

ensured that the wear phenomena to be recorded are 

reflected in the measured signal. Since there is often little 

knowledge of the specific design of the gears and bearings 

to be tested, it has proved suitable in practice to determine 

the optimum travel speed in the course of experiments. The 

intervals at which self-tests should be performed depend 

mainly on the velocity at which the wear to be determined 

progresses. Since wear and tear usually develops very 

slowly, the intervals can be selected correspondingly long. 

 D. System Architecture 

The basis is formed by MEMS-based vibration sensors, 

which are mounted on the axes joints. The vibration 

signals acquired during the self-test are analyzed in an 

Edge Device and the condition is classified using methods 

from the field of machine learning. The result of the 

classification and the features used for it are then sent to 

an IoT platform in the cloud where they can be further 

analyzed. For example, trends can be determined and 

future progress can be predicted based on the historical 

development of the features. The system architecture 

intends that an arbitrary number of sensor nodes can be 

connected to an IoT platform in the cloud via a central 

communication interface, the so-called edge device. The 

communication between the sensor nodes and the edge 

device is done via an event bus, following the publish-

subscribe pattern. The communication protocol used is 

MQTT (Message Queuing Telemetry Transport), which is 

widely used for IoT communication. To keep the energy 

consumption of the sensor nodes as low as possible, it 

Exchange of the feed axis Z2 by manufacturer service
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should be ensured that data acquisition and transmission to 

the edge device only take place in the context of the self-

test. Therefore the sensor nodes have subscribed to a 

start/stop event at the MQTT Broker. If the industrial robot 

under consideration is IoT-capable, it should also be 

actively integrated into the system architecture so that data 

acquisition can be automatically synchronized with the 

actual self-test. Fig. 2 gives a general overview of the 

proposed system architecture. For the sake of clarity, the 

integration of the robot controller has been omitted.  

 

 

Fig. 2.  Overall system architecture 

As can be seen from Fig 2., the sensor nodes form the 

basis of the architecture, since they transform the 

production system to be monitored into a cyber-physical 

system. Therefore, sensor nodes have to fulfill further 

tasks besides data acquisition. Depending on the 

application, these are typically the following: 

 Signal processing, 

 Energy management, 

 System control, and 

 Secure communication, including encryption 

and decryption. 

The schematic structure of a sensor node is shown in 

Fig. 3 (abbreviations used are explained in Table 1). 

 

 

Fig. 3.  Structure of a sensor node according to [15] 

Table 1 briefly explains the main tasks of the individual 

components of a sensor node. 

 

Table 1.  Main tasks of sensor node components. 

Component Task 

Energy 

Producing Unit 

Energy production by means of 

energy harvesting; 

Charging the battery 

Energy Unit Autonomous energy supply 

Transceiver Provision of radio standards using 

diverse communication protocols; 

Establishing a connection to other 

devices in the network and 

organizing communication 

External 

Memory 

Persistent backup of measurement 

data or other data 

ADC (Analogue 

to Digital 

Converter) 

Converting analogue data into 

digital data 

Sensor Acquisition of analogue physical 

quantities of the environment 

RAM Storage of data (e.g. variables) 

during program execution 

Flash Memory Storage of program code 

CPU/MCU 

(Central 

Processing Unit/ 

Microcontroller 

unit) 

Execution of program logic and 

interaction with sensors, external 

memory and transceiver via 

appropriate ports 

 

Serial Ports Provide interfaces like I2C (Inter-

Integrated Circuit) or SPI (Serial 

Peripheral Interface) and allow the 

CPU/MCU to communicate with 

external hardware 

 E. Data Analysis 

As already mentioned in the State of the Art section, 

statistical moments in vibration signals have proven to be 

suitable features for detecting advancing wear. In 

particular, the mean value, variance, kurtosis, skewness, 

and RMS were selected to form the feature vector. Table 1 

presents the computational formulas of the selected 

features. 

Table 2.  Computational formulas of the selected features. 

Feature Formula 

Arithmetic mean �̅� =
1

𝑛
∙ ∑ 𝑥𝑡

𝑛

𝑡=1
 

Variance 𝜎2 =
1

𝑛
∙ ∑ (𝑥𝑡 − µ)2

𝑛

𝑡=1
 

Skewness 𝜐 =
1

𝑛
∙ ∑ (

𝑥𝑡 − µ

𝜎
)

3𝑛

𝑡=1
 

Kurtosis 𝛾 =
1

𝑛
∙ ∑ (

𝑥𝑡 − µ

𝜎
)

4𝑛

𝑡=1
 

RMS 𝑅𝑀𝑆 =
1

𝑛
∙ √∑ 𝑥𝑡

2
𝑛
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These features are determined individually for each 

travel direction and transferred as input data to the model 

of a Support Vector Machine (SVM), which has been 

teached using training data. The Random Forest (RF) 

classifier and the k Nearest Neighbours (kNN) classifier 

have also proved to be alternative classification algorithms 

with good results in experiments when monitoring the belt 

tension of the drive of a grinding spindle. The SVM 

classifier was implemented using the Python module 

scikit-learn [16]. The classification is carried out on the 

Edge Device, which then sends both the feature vector and 

the classification result to the IoT platform for permanent 

storage of the data. 

 IV. EVALUATION 

 F. Experimental Setup 

The evaluation was carried out in the test field of the 

Berlin Production Technology Centre. The following 

components were used for the experimental setup: 

 Industrial robot Comau NJ-110-3.0, cf. Fig. 4, 

 Sensor node Bosch XDK110, cf. Table 2, 

 Edge device Raspberry Pi 3 B+, and 

 Database Server with Database Management 

System (DBMS) PostgreSQL. 

 

 

Fig. 4.  Industrial robot (Comau NJ-110-3.0) 

 

 

 

 

Table 3.  Specification extract of Bosch XDK110. 

Component Description 

Network 

Communication 

Gigabit Ethernet; 

2,4 and 5 GHz Wireless LAN; 

Bluetooth 4.2 low energy 

Processing Unit 32-Bit MCU (ARM Cortex M3) 

Energy Unit Li-Ion battery 560 mAh 

3D Accelerometer Bosch BMA280 

Measuring range: ±2 … ± 16 g 

Sampling rate: 2 kHz 

 

The sensor nodes were mounted as close as possible to 

the axis joints by means of magnetic holders in order to 

record the vibrations emitted by the bearings and gears as 

undistorted as possible. Fig. 5 shows the mounting 

positions of the sensor nodes. 

 

Fig. 5.  Mounting positions of the sensor nodes 

 G. Results and Discussions 

The implemented system architecture fully met the set 

requirements. Data communication using the publish-

subscribe pattern via the MQTT IoT protocol proved to be 

very robust, even when using several sensor nodes in 

parallel. 

Unfortunately there were no differently worn 

components available for the experiments to evaluate the 

implemented classifier with real data. Furthermore, no 

information on the wear condition at the time of the 

experiments was available. The principle functional 

validation of the SVM classifier was therefore carried out 

with synthetic data. In the context of the presented 

condition monitoring concept, statistical control charts (cf. 

Fig. 1 and [11]) can be applied if the prerequisites for the 

use of classifiers are missing. The possibility to detect 

trends in these charts can already give hints on increasing 

wear and tear and thus supports the introduction of 

predictive maintenance with simple means. 
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 V. CONCLUSIONS AND OUTLOOK 

In this paper a holistic concept for condition 

monitoring of industrial robots based on self-tests and 

MEMS-based sensor nodes was presented. It was shown 

which constraints have to be taken into account when 

designing a self-test to determine the wear condition and 

how a suitable system architecture should be designed. 

Furthermore, it was discussed how machine learning 

methods can be used to classify the wear condition, 

provided that sufficiently labelled historical data are 

available. 

The fact that obviously no labelled case data are 

available in practice for the application of supervised 

learning methods in the context of condition monitoring is 

a serious problem. For economic reasons, industry is not 

willing to put in the effort to collect case data and label 

them. Future research activities should therefore focus on 

how (partially) automated labelling of measurement data 

can be carried out. 
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