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Abstract – The main concept of the paper is to place 

Reinforcement Learning (RL) into various fields of 

manufacturing. As a first attempt, RL for Statistical 

Process Control (SPC) in production is introduced in 

the paper; it is a promising approach owing to the 

adaptability and continuous application capability of 

reinforcement learning. 

The well-known Q-Table method was applied for get 

more stable, predictable and easy to overview results, 

therefore, quantization of the values of the time series 

to stripes was required. The formulated goal was to 

predict the time series value in a certain number of 

production steps ahead as manufacturing trend 

forecast. The recent values of the analysed time series 

were selected as states for the RL and the future 

probabilities of its values being in the formulated 

stripes were defined as RL actions. For action update, 

the Bellman equation was applied and the RL reward 

depends on how accurate the predicting is. 

Furthermore, two concepts were introduced, the 

Reusing Window (RW) and the Measurement Window 

(MW). The RW is a sliding window that determines 

how many times one measured value of the time series 

will be reused during the RL repeatedly, while the MW 

is defined for enabling the comparison of learnings 

with different RWs by sampling them with the same 

evaluation frequency. 
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 I. INTRODUCTION 

Artificial Intelligence (AI) and machine learning 

approaches are spreading across all territories in our live, 

it is also valid for technical fields, e.g. for manufacturing 

sector as well. Nowadays, the increase in the speed of this 

expansion is growing, consequently, the intensity of 

changes and novel challenges require more and more 

attention with exhaustive research & development 

activities, moreover, the frequently arising novel AI and 

ML techniques have to be continuously adopted to the 

exploitation domain to reach the best match. This mission 

is valid also to manufacturing, while the well-known 

Industry 4.0 global initiative (called as Industrial Internet 

or Cyber Physical Production Systems (CPPS)) supports, 

moreover, incorporates these directions, consequently, the 

actual situation is quite promising. 

There are various areas of the AI discipline (e.g. 

machine learning, search techniques, multicriteria 

optimisation, inference and expert systems, graph 

modelling and traversal…), nowadays the so called Deep 

Learning (DL) receives the highest level attention, making 

it to the most fashionable solution, while sometimes some 

may forget the other important areas of AI. In general, 

Machine Learning (ML) is one of the key, basic 

foundations in AI, originally this branch started with two 

directions of supervised and unsupervised learning, but the 

pioneering results of Sutton [1] and his professors and 

colleagues extended this range to reinforcement learning 

in 1980s, currently there are also further combinations, e.g. 

semi-supervised learning.  

The spread of various artificial intelligence and 

machine learning techniques in manufacturing is valid for 

reinforcement learning as well. However, reviewing the 

literature mirrors that the domain specific adaptation to 

various production fields concentrates mainly to 

production scheduling and robotics. This state-of-the-art 

status led to the motivation to extend and adapt RL to 

furthers potential fields of manufacturing, the current 

paper introduces the RL based SPC with three main 

advances ahead: 

• A novel, general, manufacturing independent, 

dynamic Q table handling for RL is described, 

even if it was motivated by the production 

adaptation challenges. 

• The specialities of process control in 

manufacturing led to the introduction of the so-

called Reusing Window (RW) in RL for SPC. 

• To compare the efficiencies of various RL 

solution in production SPC the Measuring 

Window (MW) had to be introduced. 

The paper is organised as follows. After the current 

introduction the actual status about the reinforcement 

learning in production field is shortly summarized. The 

third paragraph introduces the SPC in manufacturing 
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followed by the novel approach to introduce RL in 

production, especially for SPC assignments and its test and 

application results are described in the next paragraph. 

Conclusions and outlook, acknowledgements and 

references close the paper. 

 II. RL IN PRODUCTION 

In spite of this high potential situation, the state-of-

the art literature mirror that RL applications in 

manufacturing are concentrated mainly only on two fields: 

Production scheduling and Robotics. 

In production scheduling, the state-of-the-art for 

dynamic scheduling shows a growing increase in the use 

of RL algorithms. Several papers use Q-learning [1][2][3], 

deep Q-learning [4] and adapted version of Q-learning 

[5][6]. Most cases focus on value-based algorithms 

[1][2][3][4][7], however [3][6] are policy-based. Some 

researchers use the epsilon-greedy method [2][3][4], 

whereas Bouazza et al. [1] use it in addition to the machine 

selection rule. While Kuhnle et al. [3][6] consider the 

architecture of a RL algorithm framework, Qu et al. [8] 

analyse the optimal assignment of multi-skilled workers. 

In [1][8][4] a multi-agent setting is realised. Overall, all 

papers except [8] use a simulation to test their approach. 

Kardos et al. introduced a Q learning based RL 

architecture into the scheduling/dispatching decisions in 

productions systems and proved on simulation basis that 

their solution significantly reduced the average lead time 

of production orders in a dynamic environment. Moreover, 

it was shown that as the complexity of the production 

environment increases, the application of RL for dynamic 

scheduling becomes more beneficial that makes the future 

production systems more flexible and adaptive [9]. 

In the field of robotics applications of RL. Nair et al. 

present a system with RL to solve multi-step tasks [10]. 

The report by Plappert et al. [11] introduces a suite of 

challenging continuous control tasks and a set of concrete 

research ideas for improving RL algorithms. Yuke et al. 

combined reinforcement and imitation learning for solving 

dexterous manipulation tasks from pixels. [12]. Kahn et al. 

have presented high-performing RL algorithm for learning 

robot navigation policies [13]. Long et al. optimize a 

decentralized sensor level collision avoidance policy [14]. 

Johannink et al. studied the combination of conventional 

feedback control methods [15]. 

Considering the RL adoptations to various 

industrial/manufacturing fields, there are many open 

issues and challenges, the current paper is aiming to bring 

forward the RL application to the field of SPC in 

production. 

 III. STATISTICAL PROCESS CONTROL IN 

MANUFACURING 

Statistical Process Control (SPC) in manufacturing is 

addressed in the scientific literature around the phrase of 

Control Chart Pattern (CCP). The paper of Ranaee and 

Ebrahimzadeh [20] differentiates in six types of trends that 

typically arise in SCP charts as presented in Fig. 1. 

 
 

Fig. 1. Six common types of CCPs: (a) normal, (b) cyclic, (c) 

upward trend, (d) downward trend, (e) upward shift and (f) 

downward shift. 

 

However, Lavangnananda and Khamchai defined 

nine variants of patterns [22] (Fig. 2.), where the final one 

represents that there is a mixture of effects typically, 

consequently, superposition of patterns can be faced in 

industry.

 

Fig. 2. Nine common types of CCPs: top: normal, cyclic, 

upward (increasing) trend, downward (decreasing) trend, 

upward shift ; bottom: downward shift, stratification (novel), 

systematic (novel) and mixture 

 

Considering the various control chart patterns in Fig. 

1. and Fig. 2. it is still an open challenge what can be 

considered as “Normal” behaviour, what distribution with 

what parameters it has, even if at all it can be described 

with a formal statistical distribution, what level of noise is 

superposed on it, what distribution the noise has (even if at 

all it has one), even if at all the noise and the basic signal 

trend can be separated. On the other hand, it is also a 

significant challenge to identify and separate the different 

trend types and their parameters based on a real SPC signal 

measurement signal. 

Köksal et al. reviewed the quality management 

related applications of various data mining techniques in 

manufacturing industry [23]. They grouped the quality 

related assignments into four groups: product/process 

quality description, predicting quality, classification of 

quality, and parameter optimization. They proved the 

increasing importance of such research and application 

techniques and their relevance in industry. 

El-Midany et al. used ANNs to recognize a set of sub-
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classes of multivariate abnormal patterns [23] in 

machining of a crank case as one of the main components 

of compressor. They used a simulated and a real-world 

data set as well; furthermore they can identify the 

responsible variable(s) on the occurrence of the abnormal 

pattern. Ranaee and Ebrahimzadeh used a hybrid 

intelligent method [20] to recognize whether a process 

runs in its planned mode or it has unnatural patterns. This 

method includes three modules: a feature extraction 

module, a multi-class SVM-based classifier module 

(MCSVM) and an optimization module using genetic 

algorithm. They tested the algorithm on synthetically 

generated control charts. Control Chart Patterns (CCPs) 

with different levels of noise were analysed by 

Lavangnananda and Khamchai [22]. They implemented 

and compared three different classifiers: Decision Tree, 

ANN, and the Self-adjusting Association Rules Generator 

(SARG) for process CCPs that were generated by 

predefined equations of GARH (Generalized 

Autoregressive Conditional Heteroskedasticity) Model for 

X̅ chart. Pelegrina et al. used different Blind Source 

Separation (BSS) methods in the task of unmixing 

concurrent control charts to achieve high classification 

rates. [12] Gutierrez and Pham presented a new scheme to 

generate training patterns for ML algorithms: Support 

Vector Machine (SVM) and Probabilistic Neural Network 

(PNN) [26]. Yang et al. proposed a hybrid approach that 

integrates extreme-point symmetric mode decomposition 

(ESMD) with extreme learning machine (ELM) to identify 

typical concurrent CCPs [27]. Motorcu and Güllü 

constructed X-R control charts for each production line on 

the data obtained from shop-floor to provide high quality 

production by eliminating key problems: undesirable 

tolerance limits, poor surface finish or circularity of 

spheroidal cast iron parts during machining [28]. 

Huybrechts et al. applied standardization, trend 

modelling, and an autoregressive moving average 

(ARMA) model to determine short-term correlation 

between subsequent measurements. The out-of-control 

observations can be determined precisely with the Dijkstra 

model and cumulative sum chart of the corrected residuals 

between the measured and predicted values. Milk yield 

data from two Automatic Milking System (AMS) farms 

and one farm with a conventional milking system were 

used for the case study [29]. 

Viharos and Monostori presented an approach, 

already in 1997 [30] for optimization of process chains by 

artificial neural networks and genetic algorithms using 

quality control charts. It was shown that the control of 

“internal” parameters (temporal parameters along the 

production chain) is a necessity, by this way, early 

decisions can be made whether to continue the production 

of a given part or not. Also continuous optimization of the 

production system is possible using the proposed solution. 

Concerning the applied techniques, the most 

prevalent approaches are based on statistical methods, 

such as autoregression, moving average and their 

combinations: autoregressive integrated moving average 

model (ARIMA) [31] with use of linear regression 

analysis, quasi-linear autoregressive model [32] or 

Markov chain models (MCM) [33]. These methods based 

on historical production or time series data for modelling 

and prediction. 

Another approach has appeared with the evolution of 

artificial intelligence, such us modelling with artificial 

neural networks (ANN), support vector machines (SVM) 

or nearest neighbour approaches based on pattern 

sequence similarity [34]. There are several curve-fitting 

methods in this field for small sample data, such as genetic 

algorithm [35]. By using artificial neural networks 

combined with statistical methods to compensate 

drawbacks of the separate approaches in trend forecasting 

lead to better classification and approximation results. 

A mixed, physical model integrating real process 

measurements was presented by R. Paggi et. al. for 

computing process uncertainties beyond their prognosis 

values [36]. Various physical modelling techniques, like 

finite element methods, analytical equations can represent 

the known dependencies. Francesco et. al. [37] used 

effective measurements derived from the conformity tests 

to improve the accuracy of the Remaining Useful Life 

(RUL) evaluation. 

The review of the literature and the applications 

mirror that there are various methods for SPC forecast and 

handling in manufacturing, including also machine 

learning techniques, however, the advances of 

reinforcement learning are not yet exploited. This status 

served with the scientific motivation to adopt RL to SPC 

in production as introduced in the next paragraphs. 

 IV. RL FOR SPC IN MANUFACTURING 

In the current approach a simulation environment 

was built up that emulates the production trend behaviour 

and generates time series signal as it is produced by the 

manufacturing environments and production plants. 

 A. Production simulation environment 

A simulation environment is created where the RL 

agent is able to learn while a complete behaviour is known 

about the trends inside the environment. The simulation is 

able to generate time series of any length. The time series 

consist of linear trends, whose lengths are sampled from a 

uniform distribution. Their slope can have three types – 

decreasing (-45°), stagnating (0°) and increasing (45°). 

Due to the complexity and noisiness of the real time series, 

noise is added to the original trend after it is generated, as 

every point of the new noisy trend is sampled from a 

gaussian distribution, where the mean is the value of the 

original noiseless point and the size of the noise is the 

standard deviation. Usually, the size of the noise is 

between 1% and 10% of the interval formed by the two 

out-of-control boundaries of SPC. 
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Fig. 3. Generated time series, showing the original and the 

noisy trend (noise=3, Upper Tolerance Limit (LTL) – Nominal 

value = 20 = Nominal Value – Lower Tolerance Limit (LTL)) 

 

As Fig 3. shows the time series which consists of 

original trends and another time series, consisting of noisy 

trends. The learning uses only the noisy time series, but in 

case requiring the same time series noisier or less noisy it 

is simple to generate it based on the original time series. 

 B. Stripes and Q-Table 

Before starting to use deep neural networks, which 

are popular nowadays everywhere, thus here as well, we 

wanted to analyse the hidden dynamics of the production 

SPC as time series. 

To predict future trends, the problem was broken 

down to forecast the time series value (which generates a 

related action in production system) in a certain number of 

steps forward. For this goal, Q-Table was used owing to its 

white box nature, meaning that the concealed processes are 

visible. 

 

Fig. 4. Time series with stripe boundaries. Green is the normal 

range (optimal), yellows are the control ranges (warning) and 

the reds are the out-of-control ranges (failure). 

The value range of the signal generated was divided 

into fix stripes. The time series values in the same stripe 

get the same quantized value. This is necessary to the Q-

Table, because with continuous values the length of the 

table would grow exponentially. A fix interval was 

arbitrarily selected for the value range between -20 and 20, 

and divided it into five stripes – two out-of-control (under 

-20 and above 20), two control stripes ((-20, -10] and [10, 

20)), and a normal stripe ((-10, 10)), as Fig. 4. shows. This 

approach is inherited naturally from the industrial SPC 

approaches. These numbers are fully arbitrary, it is 

possible to choose other numbers or other boundaries. 

The main structure of the Q-Table is shown in Fig. 

5., where states consist of quantized values, measured in 

T, T-1, T-2, …, order. T is the current time. OOC refers to 

the Out-Of-Control range, C refers to the Control range 

and N refers to the Normal range. The minus and plus signs 

are shown due to the symmetry (above or under the 

Normal range). T refers to time. The numbers under them 

are the goodnesses of the actions, respect to the row. 

The table is structured as follows: the states are 

chosen for the rows, and the actions are chosen for the 

columns. The states consist of quantized values, its length 

depends on how many previous values are taken into 

account during predicting. Concerning the actions, we had 

a novel idea – in each state, the actions are the stripes for 

prognosis, so during learning when the best action is 

searched in every state, in reality the predicted future one’s 

stripe is searched. As a result, in the table each state/row 

has five actions/columns (according to the number of 

stripes), meaning the table has five columns and a 

changeable rows number in summary. 

Fig. 5. A part of the typical Q table and its content in the RL for 

SPC in manufacturing approach. 

 C. Dynamic Q-Table in simulation 

A major problem with Q-Table is its memory 

requirement. For example, for a table with A columns 

where each column takes B different values, the size of the 

table could reach to 𝐵𝐴 rows. With large A and B, the 

generation and storage of the table could cause problems, 

moreover it is unnecessary to allocate the memory for the 

empty table before it is used. Therefore, we introduced a 

technique, called dynamic Q-Table, where only as much 

memory is allocated as required and only when it is 

required. When the algorithm reaches a new state, it adds 

it to a list which represents the rows of the Q-Table. Then 

its initial actions’ values are selected randomly. The values 

of the actions represent the goodness of the actions – high 

value means that with numerous chance the trend will be 

in that stripe, which, after several steps, corresponds to the 

action. So, if the state was not in the Q-Table yet, then it is 

added to the table’s end (in the future research the order of 

the rows will be much more optimised exploiting the 

characteristics of the production SPC – e.g. normal states 
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are much more frequent). Its action values are selected 

randomly, because we found that it helps exploring at the 

beginning. If it was already in the Q table, then the chosen 

action will be updated as it is detailed in the next chapter. 

At the beginning, when the agent mostly explores its 

environment, it often meets with states whom it has not 

been before, so they are added to the table. As it explores, 

its knowledge about the environment grows, therefore it 

meets more and more times visited states, where it only 

updates the relevant action of the state, so in most of such 

cases new row are needed. As a result, the length of the 

table grows logarithmically, as it shown in Fig. 6. In the 

given, concrete case as the Fig 6. shows, it may be rational 

to stop the learning after ~2000 learning steps, because 

even though the table is still growing, that is not increasing 

the recognition rate significantly. It is a very important 

result proving that there exists a rational limit for the Q 

table where the size, calculation time, etc. requirements 

grow significantly but it does not bring valuable additional 

knowledge to the given SPC trend forecast, consequently, 

the IT background requirements can be limited. 

 

 
 

 

Fig. 6. Length of the Q-Table during a very long learning (top) 

and in short term the length compared to the recognition rate 

for production statistical process control forecast (bottom). 

 D. Learning 

During learning, the agent walks through the 

generated time series, as a moving window. Each moving 

window will be quantized and become a state. The agent 

attempts to predict in which stripe it will be at a certain 

time depending on the current state and its actions’ values 

in the Q-Table. In the next step the agent receives a reward 

from the environment, according to its prediction. The 

reward system is defined so that the agent gets 1.0 reward, 

if its forecast was accurate (the forecasted stripe is became 

true), 0.5 reward if it predicted one is one of the 

neighbouring stripes of the real one, and 0.0 reward, if it 

was more inaccurate than that, so, in all other cases. 

After receiving the reward, the chosen action’s Q 

value will be updated using the Bellman equation (eq. 1), 

where 𝑄𝑠,𝑎 is the value of the a action of row s of the Q-

Table. 𝛾 is a parameter, 0 ≤ 𝛾 ≤ 1, called as discount rate. 

The discount rate determines the present value of future 

rewards: a reward received k time steps in the future is 

worth only 𝛾𝑘−1 times what it would be worth if it were 

received immediately [38]. r marks the reward. 

 𝑄𝑠,𝑎 = 𝑄𝑠,𝑎 + 𝛾 ∙ (𝑟 − 𝑄𝑠,𝑎) () 

Action selection is a widely researched area in the 

RL, it is well known as the “Exploration-Exploitation 

Trade-off” [39]. In RL cases, where a complete model of 

dynamics of the problem is not available, it becomes 

necessary to interact with the environment to learn by trial-

and-error the optimal policy. The agent has to explore the 

environment by performing actions and perceiving their 

consequences. At some point in time, it will have a policy 

with a particular performance. In order to see whether 

there are possible improvements to this policy, it 

sometimes has to try out various actions to see their results. 

This might result in worse performance because the 

actions might (probably) also be less good than the current 

policy. However, without trying them, it might never find 

possible improvements. In addition, if the world is not 

stationary, the agent has to explore to keep its policy up to 

date. So, in order to learn, it has to explore, but in order to 

perform well, it should exploit what it already knows. 

Balancing these two things is called the exploration-

exploitation problem. 

In this paper the ε greedy algorithm is used [38] – the 

algorithm chooses one action based on a number of ε. The 

probability of choosing one action randomly is epsilon and 

the probability to choose the one with the largest value 

(best action) is 1-ε. During learning, the value of epsilon 

decreases exponentially, therefore the algorithm rather 

explores at the beginning and it gains knowledge about its 

environment and exploits it. This ε greedy algorithm is the 

most popular and widely applied in research and practice. 
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 V. REUSAGE WINDOW (RW) AND 

MEASUREMENT WINDOW (MW) 

In production environment each measured value has 

significant cost coming from many sources, e.g. cost of the 

equipment, training of the personnel, doing the activity, 

establishment if the IT background for collection, 

communication and storage, moreover softwares to use the 

measurements, moreover, continuous re-calibration of the 

measuring devices, their maintenance, etc. Consequently, 

the measured values in manufacturing have high value and 

has to be exploited as much us possible. In the production 

control environment of today, this ideal situation is far not 

yet reached, the data asset is higher than its usage. 

The main problem with the method mentioned above 

is that it lacks of reusability. In manufacturing, the time 

series is a series of measurements, where every 

measurement is a produced component/product/process, 

which may be expensive. Consequently, using all 

measurement values only once seems very wasteful. 

Therefore, it is desirable to reuse measurement values, and 

this is why we introducer the Reusage Window (RW) 

concept, which tells how many times we reuse the 

individual values during learning. 

 A. Reusage Window (RW) 

As opposit to the previous concept, where the agent 

walks through the time series only once, with RW it works 

as follows: an interval is selected from the time series the 

and the moving window of the agent goes through this 

selected interval once, sampling and quantizing states from 

it. This is one learning iteration. Then the RW moves one 

step on the time series, and it starts again, until the end of 

the RW meets with the end of the time series, then the 

learning stops for that individual time window. It means 

that one data is (re)used so many times as long the length 

of the RW is. 

As Fig. 7. represents, the RW moving window goes 

through step-by-step the time series and selects an interval 

(marked in green). Within that interval, the agent goes 

through that, and process each interval as described in the 

epsilon greedy algorithm mentioned above. When it 

reaches the end of the green interval (RW), the whole 

green interval moves one step further and the whole 

process starts again. The RW goes all the way to the end 

of the time series. 

 

 
Fig. 7. The RW (here it is 10) selects an interval 

within the time series. The blue points are the measured 

values. The figure represents the repeated reinforcement 

learning as the cycle of the continuously shifted reusage 

windows. 

 B. Measurement Window (MW) 

Accuracies of different agents with their recognition 

rate curves are measured – after every learning iteration, 

the received rewards are summarized and is divided by the 

length of the learning iteration (which is basically the 

RW). However, when recognition rates with different 

RWs are compared, the curve of the higher RW will be 

more balanced, because in that case the algorithm averages 

more proportions in the same time, resulting the outliers’ 

moderation. Therefore, for a more accurate comparison it 

is needed to standardize the length of that interval within 

the performance evaluation takes place and apply it in all 

cases. It the established implementation during learning 

the agent-predicted stripe (action) and the actual stripe 

where the predicted point of the trend appeared are stored, 

therefore, it is possible to choose arbitrarily the length of 

the interval for evaluation, which is the MW. Fig. 8. shows 

a comparison case for different RW evaluated by the same 

MW, so, with the proposed MW concept the performances 

are (finally) equal that was not the case without the MW 

concept. 

 

 

Fig. 8. Comparing different recognition rates with different 

RWs. (noise=0, MW=150) 
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 VI. EXPERIMENTAL RESULTS 

In this section the performance of the learning system 

as the production SPC recognition rates of different RWs, 

MWs and noise levels are compared. It is desirable to find 

the appropriate range of RWs where the recognition rates 

reach high values while the resources usage (time, 

calculate time) are minimalized/acceptable. It is also 

desirable to find the range of MWs with which the system 

performance is accurate and not too noisy and no 

information is loosed. 

 

 

Fig. 9. Comparing different recognition rates with different 

RWs. (noise=0, MW=150) 

As Fig. 9. shows, as RW increases the recognition 

rates reach higher levels and their deviations decrease. It 

can be seen that RW=5 is too small, because it barely 

reusages the data, while RW=500 is too large, because the 

difference between it and RW=200 barely noticeable – but 

it requires 2.5 times more learning time for the same result. 

Taken in consideration that learning requires time and 

computing capacity, it is not meaningful using higher RWs 

than 200 in the given case. It means that reusing of 

production data is especially important and necessary, 

however it has a maximum reusing ratio, consequently, the 

RW has a maximal length, that is typically domain and 

situation dependent. 

 

Fig. 10. Comparing different recognition rates with different 

RWs. (noise=5, MW=150) 

At higher noise levels (Fig. 10. And Fig. 11.), the 

same situation is observed because the difference between 

the curves of RW=200 and the curves of RW=500 is not 

significant, while RW=5 or RW=10 are very noisy, 

fluctuating and unstable for appropriate and reliable 

evaluation. 

 

Fig. 11. Comparison among various recognition rates with 

different RWs. (noise=10, MW=150) 

As conclusion, in the current manufacturing domain 

there is no need and in parallel no further potential to reuse 

measured data more than 200 times, so, RW = 200 is a case 

related appropriate choice. 

MW related calculations have also computational 

requirements and comparison expectations, consequently, 

it is also worth to analyse whether it has an useful 

maximum value, so, maximum length, meaning, that the 

SPC in production has also a maximal time period to that 

is worth to analyse and e.g. to supervise. 

 

Fig. 12. Comparing RL performance with different MWs. 

(noise=0, RW=50) 

As Fig. 12. shows, at the lower MWs the accuracy 

and the reliability of production system evaluation 

decreases – low MW means thin intervals in within the 

rewards are averaged, meaning that the individual rewards 

affect too much. High MW solves this problem, but in that 

case, information loss appears because each data was used 

50 times (because of RW=50), but in the averaging process 

each of them was used 600 times (because of MW=600), 

therefore it creates a significantly smoother curve than the 

reality is.  
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 VII. INDUSTRIAL APPLICATION 

To test the concept, a simulation based on real 

consequences was created. Thousands of industry data was 

processed to determine the hidden dynamics of the real 

time series.  

The whole process is automatic. Events are sampled 

from Gaussian distributions determined on the data, which 

affect the time series, for example it moves the time series’ 

mean outward, increases its noise or it immediately jumps 

the time series into an outer stripe. We created events like 

“tool brokes” or “measurement error”. The algorithm’s 

goal is to keep the time series in the normal zone. To reach 

this, it affects on the time series with actions like “tool 

change”, “verification” or “no action”. This is shown on 

Fig. 13., where actions are presented (except the “no 

action” action). After the action, from the simulation 

environment the algorithm recieves a reward based on the 

action’s cost (e.g. “tool change” is more costly than 

“verification”) and on “how well” it moves the time series 

inward, meaning its distance from the normal center. 

 

Fig. 13. Production trend behaviour, production (line) event 

(bottom) and suggested actions (top) by the reinforcement 

learning agent. 

 VIII. CONCLUSIONS AND OUTLOOK 

The paper introduced the concept and the solution to 

place Reinforcement Learning (into Statistical Process 

Control in manufacturing. It was proved that it is a 

promising approach owing to the adaptability and 

continuous application capability of reinforcement 

learning. 

The well-known Q-Table method was applied for get 

more stable, predictable and easy to overview results, 

therefore, quantization of the values of the time series and 

Quality Control Charts (QCC) to stripes was required. The 

formulated goal was to predict the time series value in a 

certain number of production steps ahead as 

manufacturing trend forecast. 

A novel technique, called dynamic Q-Table was 

introduced, in which only as much memory is allocated as 

required and only when it is required it a beneficial 

approach from practical applications’ viewpoints as well. 

Furthermore, two concepts were introduced, the 

Reusing Window (RW) and the Measurement Window 

(MW). The RW is a sliding window that determines how 

many times one measured value of the time series will be 

reused during the RL repeatedly, while the MW is defined 

for enabling the comparison of learnings with different 

RWs by sampling them with the same evaluation 

frequencies. This extension of the traditional RL is 

necessary in the given manufacturing SPC environment, 

considering the cost of a measurement value in production 

and the precise evaluation requirement about the 

performance of the production system. 
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