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Abstract – The paper presents the measurement system 

for the diagnostics of the ratchet mechanisms based on 

the acoustic signal analysis. Such mechanisms are 

common in such devices, as drive elements in bicycles, 

safe locks or socket wrenches. Their exploitation may 

lead to wearing out teeth in gears, which is significant 

in the sport bicycles. To ensure safety of their user, the 

mechanism’s state has to be evaluated. Based on the 

symptoms extracted from the audio recordings the 

Artificial Intelligence-based classifier can be used to 

detect and locate faults related with the pawl 

degradation. Experiments were performed to verify the 

system’s efficiency during the analysis of the selected 

gears in the sport (BMX-type) bicycle. They included 

determining the ability to operate in the noisy 

conditions and identifying faults by the decision tree, 

both in the standalone and boosted version. The 

system’s accuracy above 90% proves its applicability to 

analyze the real-world objects. 

 

Keywords – acoustic analysis, diagnostics of mechanical 

systems, artificial intelligence. 

 

 I. INTRODUCTION 

Mechanical systems are challenging objects for the 

diagnostics. Their wide implementation requires extensive 

knowledge about work regime and possible faults that may 

occur in the structure. Also, because the mechanical 

components wear out during their operation, it is important 

to know their actual state to prevent serious damages or 

learn what has to be done to fix the device. Significant 

amount of money is devoted especially to diagnose 

complex, expensive systems, which reliability drives 

human’s safety, such as in aircraft [1] or automotive [2] 

industry. The key problem here is the lack of knowledge 

about possible configurations of systems’ parameters 

(despite extensive tests in laboratory or through computer 

simulations). On the other hand, laboratory experiments 

with actual devices are time consuming and require 

sophisticated measurement modules, operating in the 

Real-Time mode. In cases of large industrial processes 

(such as in the power plants) the mathematical model of 

the analyzed phenomenon is the only source of 

information about the possible problems. It is important to 

discover, which parts of the diagnosed object are the most 

prone to faults, which leads to specific guidance regarding 

the manufacturing and implementation stages (such as 

recommendations about the periodical testing). The 

diagnostic procedures should be simple and, if possible, 

non-intrusive, which poses a significant problem of 

discovering the actual System Under Test (SUT) state 

based on the observed output signals.  

One of popular elements used in the more complex 

constructions are ratchet mechanisms. They are the driving 

force in various devices, such as lifts of lawnmowers, 

transmitting the external force (often provided by human 

muscles) to the moving elements, such as wheels. During 

the operation, such systems often wear out and their 

efficiency degrades. Therefore it is important to determine 

their current status, which allows for predicting their 

lifespan and the timestamp of the incoming damage. As 

Artificial Intelligence (AI)-based approaches are currently 

the standard diagnostic approach, they can be used for the 

task. The important aspect is the collection of 

measurement data, used to train the fault detection module. 

The aim of the paper is to present the diagnostic system 

for the analysis of the ratchet mechanisms used in the 

modern bicycles. The decision about the state of the SUT 

is made based on the acoustic analysis of the sounds 

generated by the mechanism, from which various features 

can be extracted. Such scheme is often used in the 

diagnostics of mechanical systems, where the acoustic 

signals analysis is employed [3-5]. In other cases these are 

however objects that can move independently. As this is 

not the case for ratchet mechanisms, the additional 

propulsion module must be designed in the measurement 

system. Features are exploited by the AI-based classifier 

to detect and identify faults. The main challenges of the 

presented work included creation of the system allowing 

for the uniform collection of sound from the bicycle and 

deciding which sound features should be considered for 

the decision making.  

The paper structure is as follows. In Section II the 

ratchet mechanisms are presented, especially their 

construction and work regime. Here possible faults are also 

iterated. Section III introduces the measurement system 
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constructed to record sound made by the mechanism 

during operation. In Section IV data extracted to form 

feature vectors for the AI-based classifier are presented. 

Section V covers the decision-making module. In Section 

VI experimental results are presented. The paper is 

concluded by the summary with future prospects.  

 II. DESCRIPTION OF RATCHET MECHANISMS 

The ratchet mechanisms are widely used in various 

mechanical systems, such as clocks, bridges, The 

mechanism consists of the gear or the toothed ring (Fig. 1). 

Inside there are non-symmetrical teeth and ratchets (or 

their assembly). The latter must be constantly pushed 

towards the teeth surface, for instance using the spring. 

The mechanism requires at least one ratchet to operate. 

Though there are versions revolving in both directions 

(like in socket wrenches), the type examined in this work 

revolves only forward. Mechanisms vary (depending on 

applications) in the diameter size (ranging from single mm 

in handheld watches to 80-90 cm in agricultural machines). 

They also differ in the number of teeth (from 20-30 up to 

hundreds).  

 

 

Fig. 1.Illustration of the ratchet mechanism with the visible 

gear and teeth: (a) ratchet ring, (b) pawl, (c) spring 

The most popular application of ratchets is the cyclic 

industry. They are the part of the bicycle hubs to transmit 

the propulsion in the forward direction. Their correct 

operation is crucial for safety of the user. In both 

professional and amateur vehicles these are elements the 

most prone to damage, suffering from the physical stress 

and force imposed by the cyclist. The ratchet mechanism 

in the bicycle is used to push the propulsion from the rear 

wheel, while the front one is used to steer the vehicle. The 

construction allows for the free wheel revolution if the user 

does not push the pedals.  

The mechanisms used in the presented research contain 

the toothed ring located in the hub’s body, which allows 

for the free, one-directional revolution. Going back (in the 

reverse direction) is made impossible thanks to 36 teeth 

located every 10 degrees around the gear. Four ratchets 

(working in two double-ratchet assemblies) are blocked 

against the teeth with each forward movement. Because of 

the gear construction, only two ratchets can be lean against 

the teeth of the ring. Each ratchet (located in the so-called 

driver) is pushed by its own spring. The driver receives the 

propulsion from the toothed ring. During the wheel 

revolution ratchets are sliding against teeth, generating the 

characteristic sound of “clicks”, i.e. short, high-pitched 

pulses. 

The overall number of 36 teeth of the gear and two 

assemblies of ratchets give in result 72 contact points. This 

leads to generating 72 “clicks” during the full wheel 

revolution (each generated during blocking the ratchet 

against the tooth). The example of the recorded sound for 

the complete wheel revolution (fault-free system) is in Fig. 

Fig. 2. Differences in the amplitude and duration of 

impulses (in the time domain) are related to the state of the 

ratchets and teeth. Each pulse is generated by one of two 

ratchet assemblies, working alternately. It means the even 

pulses are generated by the first set, while the odd ones are 

generated by the second set. Pulses representing the 

particular ratchet assembly are not identical, which is 

related to the limited sampling frequency of the sound 

sensor.  

 

 

Fig. 2. Results of the ratchet mechanism sound recording 

As the ratchet mechanisms are crucial for the proper 

operation of the bicycle, gaining knowledge about their 

behavior and possible faults is important for the practical 

usage of the vehicle. When damaged, the ratchet may 

cause the bicycle to crash, which is especially dangerous 

in the professional sports (for example, BMX racing). The 

possible faults of the mechanism include: 

• complete destruction (like breaking) of the ratchet  

• partial destruction (like wearing out) of the ratchet 

• damage to the spring 

• wearing out the tooth in the ring 

• breaking the whole ring (which disables the whole 

construction) 

• breaking the teeth inside the ring. 

These cases show that possible faults are permanent 

and belong to either parametric or catastrophic group. The 

former is more difficult to tackle, as it requires the accurate 

identification of the current state of ratchet or the tooth. 

Note that even breaking the ratchet or the tooth does not 

disable the bicycle immediately. The wheel is still able to 

pass the propulsion, though the forces delivered by the user 

are differently distributed.  
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To properly diagnose the mechanism, it must be 

disassembled and evaluated by the human expert. This 

operation is time consuming and requires prior knowledge 

about its work regime. The procedure can be substituted 

by the automated system collecting acoustic signals during 

the mechanism operation and processing them to make 

decision about the SUT’s state. The key problem is to 

select the measurement conditions, especially domain of 

the monitored signals and a set of features based on which 

the AI-based classifier will perform fault detection and 

identification. 

 III. DIAGNOSTIC SYSTEM 

This section presents the developed system for the 

diagnosis of the ratchet mechanism state in the bicycle, 

based on the acoustic signal analysis. It consists of the 

control and Data Acquisition (DAQ) module and 

diagnostic subsystem (Fig. 3). The former is deployed in 

the vicinity of the SUT, responsible for the collection of 

sound signal, from which features can be further extracted. 

The latter module processes the signal to extract features 

and makes decision about the state of the mechanism. Both 

parts are the conglomerate of the hardware and software 

parts. To combine all elements into the single entity, two 

problems had to be addressed. The first one is the sound 

acquisition, from which reliable information about the 

ratchets can be extracted. To properly assess the state and 

position of ratchets, sound made by them has to be 

recorded by the sensor. The pulses are generated by 

ratchets only when the rear wheel is moving forward and 

the crank mechanism remains motionless. The constant 

speed of the wheel revolution must be ensured to enable 

sound acquisition for at least one full period. This requires 

the steady propulsion mechanism for the gear and the 

sensor determining the number of revolutions.  

 

Fig. 3. Measurement system for the ratchet mechanism 

diagnostics 

The second problem is the minimization of the internal 

and environmental noise, that may influence the feature 

extraction procedure (as experiments in the isolated 

conditions, such as anechoic chamber are usually not 

possible). The former are caused especially by the 

propulsion mechanism, driving the rotation of the wheel. 

Therefore the solution should be as silent as possible. The 

latter are all unwanted sounds generated in the 

background, which will be recorded by the sound sensor. 

They should be eliminated at the stage of the system 

development and during the testing procedure 

configuration. Below all elements of the system are 

described in detail.  

 A.  Structure of the control system 

The control system (Fig. 4) is deployed next to the 

SUT, connected to it through the propulsion mechanism 

and sensors. Though it was designed to diagnose 

specifically ratchet mechanisms in bicycles, its general 

form remains the same for other devices containing them.  

It consists of the following hardware components: 

• propulsion module, which contains the DC motor (a), 

driver roller (b) and transmission belt (c). This 

module is responsible for moving the gear in the 

bicycle, which allows for the constant speed of the 

revolving wheel.  

• revolutions counting module, which is responsible 

for indicating the number of revolutions’ periods. It 

consists of the motionless magnetic field sensor (d), 

connected to the embedded computer and the 

magnetic tag (attached to the rotating wheel). Every 

time the tag closes to the sensor (the wheel turned for 

another period), the counter is incremented. 

• Microcontroller (e), which is the heart of the control 

system. It runs the software controlling the DC motor 

through the relay (f) and collects sound samples, 

passing them to the user’s computer .  

 

 

Fig. 4. Picture of the control system 

The driving mechanism of the control system is the 

standard brushless DC motor identical to the ones used in 

the industrial fans. It is relatively silent, controlled by the 

microcontroller through the relay. The motor is connected 

to the transmission belt, which on the other side is based 

on the propulsion roller that pushes the wheel. The 

transmission belt was selected because it is quieter than the 

alternative toothed gear. Also, it is better suited to 

cooperate with rings that can be produced by the 3D 
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printer. The rings are directly attached to the surface of the 

of the bicycle wheel’s tire. The shape of the driving ring 

was adjusted to touch the center of the tire. It should also 

be able to cooperate with various sizes and models of tires.  

The module for counting the wheel revolutions uses the 

reed switch (magnetic field sensor) attached to the 

regulated arm. The sensor which detects the vicinity of the 

neodymium magnet, attached to the spoke of the wheel and 

revolving with it. This way it is possible to 

programmatically detect the moment of starting the new 

period. This triggers the process of the sound acquisition, 

so the observed signals are limited in the time domain to 

the multiplicity of the revolution duration.  

The control task is fulfilled by the Arduino UNO 

computer, which is in fact the ATMega 328P 

microcontroller. It is connected to the General Purpose 

Computer (GPC) through the USB cable. The relay allows 

for starting and stopping the DC motor. The 

microcontroller is also responsible for collecting signals 

from the revolutions counting module. This way it is 

possible to trigger the diagnostic process from the GPC’s 

application. The control software was created using the 

Arduino IDE (C-like object oriented language). It runs 

directly on the computer, without any operating system.  

 B. GPC and the user application 

The second part of the system is the GPC with the 

diagnostic application. Its purpose is to fetch the 

measurement process, collect data, extract features and 

perform the diagnostic procedure. It is connected to the 

microcontroller, through which it drives the mechanical 

part of the system. The second element controlled by the 

GPC is the sound sensor (microphone) attached to the 

SUT. Its task is to collect sound samples generated by the 

ratchets, synchronized by the reed switch. Two models 

were used here: ECM-950 (connected through the jack 

socket) and Trust GXT 232 Mantis (connected through 

USB). Both have the passband of 50Hz-16kHz. Acquired 

samples are processed to extract features and perform fault 

detection. The additional functionality is the visualization 

of features, which enables the user to manually observe 

extracted parameters in the graphical form. The user is able 

to select the number of revolution periods, for which the 

samples are collected. The application was created in 

the .NET technology using the C# language. 

 C. Data acquisition process 

To implement AI into the diagnostic process, feature 

vectors representing particular ratchet states had to be 

collected first. The designed measurement system was 

used during the process of extracting characteristic 

attributes representing particular ratchet mechanism states 

for five different bicycles. At the current stage of research, 

only catastrophic faults have been considered, i.e. 

destruction of the particular ratchets, with no damage to 

the teeth assumed. For this purpose the ratchets were 

removed from the mechanism and the SUT was run to 

record generated sounds. In all mechanisms ratchets form 

2 pairs with constituent elements located at the opposite 

ends of then toothed ring. The following faults have been 

considered: 

a) fault-free system with all 4 ratchets working 

correctly. 

b) destruction of the selected ratchet in one assembly, 

c) destruction of two ratchets – each in the single 

assembly, 

d) destruction of two ratchets from the same assembly, 

e) destruction of three ratchets (leaving only one 

operational). 

The experiments were performed in the anechoic 

chamber to minimize the environmental noise, leaving 

mainly the GPC and DC motor as its potential sources (Fig. 

4). Samples were collected in the “wav” format with the 

sampling frequency 44.1 kHz and 16 bits resolution.  

 

 

Fig. 4. Laboratory test stand  

 IV. DATA ANALYSIS 

From the sequence of samples collected by the sound 

sensor the set of features was extracted. The basis was the 

time domain, but the additional attributes in the frequency 

and mixed domain were extracted. The abrupt impulses in 

the time domain slowly vanish to the reference level, as 

seen in Fig. 5.  

The set of features should be designed to minimize the 

amount of data representing the specific mechanism’s state 

[6-9]. The original sound files recorded by the microphone 

contains between 100 and 150 thousand samples for the 

single when revolution.  

The number of pulses pc during the single wheel 

revolution should be constant for each period. Combining 

this information with knowledge about the ratchet 

mechanism (the number of teeth) gives the first diagnostic 

symptom, allowing for detecting the fault of the (d) and (e) 

types (see section III.C). Determining the number or 

ratchets in the assembly is more difficult and the task is to 

distinguish the impulse generated by the set of one or two 

operational ratchets. The first task was then to correctly 

calculate pulses based on the time-domain analysis. 
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Fig. 5. Time-domain representation of the ratchet-generated 

pulse  

The first step is the pulse detection. The process, 

described in detail in [10], requires information about 

noise level. All samples below it are zeroed, leaving the 

groups treated as pulses. After determining the number and 

position of each i-th pulse it is possible to extract its 

parameters. These include the pulse amplitude ai, its 

duration ti [s] and energy Ei:  

 𝐸𝑖 = ∑ (𝑠𝑗)
2𝑡𝑠𝑡𝑜𝑝

𝑗=𝑡𝑠𝑡𝑎𝑟𝑡
 () 

where tstart and tstop are timestamps representing the 

beginning and end of the pulse and sj is the sample value. 

Additionally the transient analysis of the impulse was 

decomposed using the Wavelet Transform (WT), which is 

better suited to describe quickly fading signals than Short 

Time Fourier Transform (STFT). The configuration of 

ratchet mechanisms requires analysis of two subsequent 

pulses should to determine the state of each set. Because 

sampled pulses generated by the same ratchet differ in 

shape and calculated parameters, for each set two pulses 

were decomposed using WT. As the result, the scalogram 

is obtained, showing the pulse on the frequency-scale 

plane (Fig. 6). The shape can be described using two 

parameters: pulse field fi (the sum of all non-zero 

components in the scalogram) and its frequency width wi 

(difference in the border frequencies of the shape 

representing the pulse). 

The result of the features extraction is the vector 

containing 21 attributes, describing the specific state of the 

ratchet mechanism. 

 𝒗 = [𝑝𝑐 𝐸𝑖 𝑡𝑖 𝑎𝑖 𝑓𝑖 𝑤𝑖],     𝑖 ∈  {1, … ,4} () 

Such vectors (supplemented by the fault category c) 

were used to construct the training data set D for the 

classifier. It was filled with data from two mechanisms of 

the same type. The overall number of vectors contained D 

in the set was 10510. 

 𝐷 = [

𝒗1 𝑐1

⋮ ⋮
𝒗𝑛 𝑐𝑛

]      () 

 
 

Fig. 6. Ratchet-generated pulse scalogram  

 V. FAULTS CLASSIFICATION  

The efficiency of the prepared measurement system 

was verified using the Decision Tree (DT) classifier. This 

is the last part of the diagnostic module, which task is to 

make the decision about the discrete state of the 

mechanism (nominal or one of fault categories, pointing at 

the specific ratchets). The DT is well established in the 

diagnostic domain [11]. It is memory efficient and 

represents knowledge legible for the human being. The 

tree T was applied to the system from the Matlab 

environment (classification learner toolkit). It was trained 

using the CART method (where during the node 

generation Gini index is applied) and produces the fault 

category di for the k-th feature vector v provided to the 

input of the tree. 

 𝑑𝑘 = 𝑓(𝒗, 𝑇),      () 

The classifier accuracy (acc) is evaluated as the 

percentage of the correct fault identifications. Five 

categories were considered (as presented in section III.C, 

labeled as in Tab. 1. The set construction was aimed at 

balancing all categories. For these data the decision tree 

was created with the number of leaves between 5 and 7, 

which means it is well adjusted to the training data. 

Tab. 1. Structure of the data set D 

SUT state Fault code No. of vectors 

Nominal 1 1797 

1 ratchet damaged 2 2695 

2 ratchets damaged 

(separate sets) 
3 3206 

2 ratchets damaged 

(in a single set) 
4 1395 

3 ratchets damaged 5 1417 
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The DT was evaluated five times using the Repeated 

Random Sub-Sampling Cross Validation. The maximum 

number of nodes  to generate (to avoid overfitting) set to 

100. The tree was used as the standalone classifier and 

after the bootstrap aggregation (i.e. forming multiple trees 

from different data subsets). In the latter case 50 trees were 

generated. Average classification results are presented in 

Tab. 2, where toff  is the training time and ton is the time 

required to classify the single feature vector. 

Tab. 2. Fault identification results for the decision tree 

DT type standalone boosted 

𝑎𝑐𝑐̅̅ ̅̅̅ [%] 96.8 98.2 

toff [s] 0.69 10.57 

ton [us] 1.923 31.25 

 

The ability to distinguish the particular faults is high 

with the greatest problems with distinguishing between the 

fault-free SUT and the damage of the single ratchet, as the 

sound patterns are the most similar (Fig. 7). However, the 

error rate is about 1% here, which makes the classifier 

efficient enough for the task.  

 

Fig. 7. Confusion matrix for the fault classification. 

 VI. CONCLUSIONS 

The proposed measurement system is able to detect 

destruction of ratchets in the bicycle propulsion 

mechanism. The designed control module is able to set the 

diagnosed object in the configuration allowing for taking 

repeatable measurements. The decision tree is well suited 

for the fault location, as the average accuracy is above 95 

percent. The future improvements may include 

incorporation of additional faults (like damages to the 

teeth) and considering the parametric faults (only partial 

wearing out of mechanical elements). Also, other AI-based 

classifiers should be tested on these SUTs. Finally, the 

influence of environmental conditions (such as additive or 

multiplicative noise) on the identification accuracy should 

be tested, verifying the efficiency of the data preprocessing 

and AI-based classification. 
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