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Abstract – In the production process of natural gas one 

of the major problems is the formation of hydrate 

crystals creating hydrate plugs in the pipeline. The 

hydrate plugs increase production losses, because the 

removal of the plugs is a high cost, time consuming 

procedure. One of the solutions used to prevent hydrate 

formation is the injection of modern compositions to 

the gas flow, helping to dehydrate the gas. 

Dehydratation obviously means that the size of hydrate 

crystals does not increase. The substances used in low 

concentrations, have to be locally injected at the gas 

well sites. Inhibitor dosing depends on the amount of 

gas hydrate present. In the article two Artificial Neural 

Network (ANN)-based predictive detection solutions 

are presented. In both cases the goal is to predict 

hydrate formation. Data used come from two solutions. 

In the first one  measurements were performed by a 

self-developed and -produced equipment (in this case, 

differential pressure was used as input). In the second 

solution data are used from the measurement system of 

a motorised chemical-injector device (pressure, 

temperature, quantity and type of inhibitor were used 

as inputs). Both systems are presented in the article. 

 

Keywords – Gas hydrate, Neural network, Hydrate 

detection, Injection System, Modelling Equipment. 

 

 I. INTRODUCTION 

Natural gas hydrates are crystalline solids composed of 

water (host) and gas (guest). The guest molecules are 

trapped inside ice cavities, which are composed of 

hydrogen-bonded water molecules. Typical natural gas 

molecules include methane, ethane, propane and carbon 

dioxide. Hydrate particles can form ice-like hydrate-plugs 

that completely block the pipeline and can be up to several 

meters long. The number of hydrate molecules can 

increase to a level where the molecular agglomeration 

process begins, which can cause of plug formation in a 

given section of the pipeline. In worst cases the hydrate 

plugs result production outages [1, 2]. 

In the mid-1930s Hammerschmidt found out that 

natural gas hydrates can block gas transmission, especially 

at low temperatures. This discovery was pivotal and 

shortly thereafter led to the regulation of the water content 

in natural gas pipelines. The detection of hydrates in 

pipelines is a milestone marking the importance of 

hydrates to industry [3]. 

Gas wells are the cores of developing serious hydrate 

problems, because of the water content of the production. 

The cold zones of the ground can shift the temperature of 

the pipe and its contents into the hydrate-formation region. 

Hydrates start forming layers of water on the pipe walls. 

Crystallization can result in the formation of tens or 

hundreds of meters long plugs of hydrate [1, 4]. 

Multiple techniques exist to prevent the formation of 

hydrates. In the gas industry one of the most popular 

solutions is the use of thermodynamic inhibitors (THI) for 

a prolonged time. The injection of THI shifts the hydrate 

curve to a region where the conditions are not adequate for 

stable hydrate formation [2]. These compounds (methanol, 

ethylene glycol) have to be injected in high volume to the 

gas to be effective against hydrate formation. This is not a 

modern solution, because it has several disadvantages like 

cost of additional pipelines necessary to lead to the gas 

wells [5], the cost of methanol regeneration, which also 

contaminates the environment.  

One of the newer alternatives is the injection of low-

dosage hydrate inhibitors such as kinetic hydrate inhibitors 

(KHI) which can prevent the growth of hydrate molecules 

[6]. Antiagglomerants (AA) also belong to this group, they 

allow for the formation of gas hydrates but keep the 

hydrate crystals small and dispersed [7]. These modern, 

low-dosage inhibitors enable the usage of locally installed 

injection systems in the field, at the site of gas wells [8]. 

As can be seen, hydrate detection is key to 

administering the appropriate amount of inhibitor. 

 A. Objective and Methodology 

The paper compares two approaches. In the first one, 

the formation of gas hydrate was studied in laboratory 

conditions. The gas hydrate formation can be determined 

from the pressure curve. Using the measurement results, a 

single ANN-based solution was created where the input is 

the differential pressure. In the second project, test 

measurements were performed with a field hydrate dosing 

and monitoring system. Using the measurement results, a 

multi-input ANN-based solution was developed, where the 

inputs are pressure, temperature, quantity and quality of 

inhibitor as these also influence hydrate formation. 

In the first method measurements were performed by a 

self-developed and produced equipment. Modelling the 
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equipment is suitable for the simulation of the gas flow in 

the pipeline. Its conditions are as follows: temperature is 

in the range of -20…+30 °C, and typical gas pipeline 

pressure is in 1-10 nl/min flow rate range. During the 

measurements different inhibitor materials and gases from 

all over Hungary were used, and the values of differential 

pressure, inlet pressure, the gas temperature and the flow 

rate of the pipeline were recorded, but only differential 

pressure was used to teach neural networks.  

In the second approach data are used from the 

measurement system of a motorised chemicals-injector 

device, placed in the area of a well. This model was 

installed to test the equipment at the site of the SCADA 

Ltd, near Hajdúszoboszló in Hungary. The following 

parameters were monitored there: well siphon pressure, 

drill pipe pressure, injection pipe pressure, well pipe 

pressure, well pipe temperature, soil temperature, 

temperature of chemicals, controller temperature, inverter 

temperature, chemical tank liquid level, inverter current, 

voltage and frequency. Only well pipe pressure (pressure), 

well pipe temperature (temperature) and inverter 

frequency (quantity of inhibitor) were used to teach neural 

networks. 

After the successful test of the technology model, the 

equipment was transported to a real gas well in Szeghalom 

(Hungary). In the research data generated through 29 test 

weeks were used. The gas well was monitored online (one 

sample per minute) in the 29-week testing period, during 

which several hydrate plugs formed due to the weather 

conditions. 

The most important parameters of both approaches 

(equipment, inputs, outputs, ANN) are in Figure 1 and 2. 

 

Fig. 1. The two compared project – first approach 

The goal was to develop an accurate, stable and reliable 

ANN-based structure. Several architectures have been 

studied. Finally, the Neural Network Auto-Regressive X 

(NNARX) model with exogenous input is presented. [9].  

Several independent data sets were needed for training 

networks. Previously selected raw data were scaled and 

normalized. The resulting data were used to generate three 

training, validation and test datasets for the networks   

 

 

Fig. 2. The two compared project – second approach 

 B. Results 

Final versions of ANN-based predictive detection 

solutions were selected after the extended comparison 

processes. For both approaches NNARX was used. In both 

cases several networks were trained using different 

datasets. For the first neural network based predictive 

detection solution twelve, while for the second five 

networks were compared and the best one is selected. In 

both cases a relatively small and simple networks resulted 

the best performance. Finally, two predictive solutions 

were compared. 

 II. RELATED RESULTS IN THE LITERATURE 

Even though the injection of methanol into natural gas 

is not advised due to environmental concerns, such 

experiments can be found in the scientific literature. For 

example, in [10] French and English researchers reported 

that methanol was injected into the pipeline, in an 

environmentally not-so-friendly manner to prevent the 

formation of hydrates for gas extraction in the North Sea. 

The Karl Fischer method was used for injection. It is not 

the most appropriate approach, because it doesn't take salt 

content into account. As a result, new method was 

developed, by which the electrical conductivity and the 

sound propagation velocity can be measured in addition to 

the temperature and the pressure. Using these four 

parameters and the devised method, the methanol injection 

can be kept at an optimum. The paper published in 2013 in 

[11] also deals with optimising the methanol injection for 

the inhibition of hydrate formation in industrial processes. 

Authors stress the importance of the vapour state 

methanol, because it doesn't participate in the hydrate 

formation inhibition. To determine the quantity of 

inhibitor, two methods were introduced. The first one is a 

mathematical correlation from real data sets, the second 

one is based on ANN. 

The problem of the accurate assessment of hydrate 

formation is discussed in [12]. Authors use the Katz gas-

gravity method with the Ghiasi correlation [13]. The same 

model was used with the imperialist competitive algorithm 

[14]. The ANN was used to determine a kinetic model for 

the prediction of methane gas hydrate formation. The 
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authors tried to determine the correct number of hidden 

neurons and layers. The ANN-based model takes the 

temperature and pressure as the inputs and the output is the 

hydrate growth speed. In [15] comparison was made 

between two methods for the inhibition of gas hydrate 

development. Both use ANN, in the second it is optimised 

with the imperialist competitive algorithm [16]. The 

outcome met expectations and proved that the normal 

neural network provides better results than the optimised 

one [16], [17]. 

 III. DESCRIPTION OF THE PROPOSED METHOD 

In this section, two systems providing the measurement 

data are presented. Also, predictive hydrate detection 

methods are introduced. 

 A. Hydrate Forming Test Equipment 

In the first analysis measurements have been 

performed by a hydrate forming test machine developed 

for MOL plc. by the Department of Research 

Instrumentation and Informatics at the Research Institute 

of Applied Earth Sciences. Development of the control 

system was carried out by the author. (Fig. 3). 

 

Fig. 3. Hydrate Forming Test Equipment 

The modelling equipment is suitable for simulation of 

gas pipeline flow. The equipment creates field conditions 

within (-20 … 30) °C temperature range, and original gas 

pipeline pressure range, which is typically 60 bars. The 

flow rate value can be set in accordance to modelling 

principles, between 1-10 nl/min. The hydrate forms inside 

of a capillary cell which is placed in a thermostat. Fig. 4. 

shows the P&I (Piping and Instrumentation) Diagram of 

the equipment, where PT is the Pressure Transmitter, TT 

is Temperature Transmitter, FT is Flow Transmitter, GT is 

Gas Tank, PG is Pressure Gauge, TC is Temperature 

Control, TE is Temperature Element, VA is Valve, SP is 

Pressure Generator unit, DC and DR are separator cells. 

Natural gas and interfacial water from a Szeghalom gas 

well (Hungary, near to Füzesgyarmat) were used in tests. 

Different inhibitor mixtures were also added. 

 

Fig. 4. P&I Diagram 

Gas hydrate formation time was examined under gas 

well conditions (p, dp, T, Q), with or without the addition 

of different inhibitors. The following parameters were 

recorded: pressure, differential pressure, temperature and 

flow rate [18].  

 B. Control and Chemical Dosing Equipment  

The well area control and the chemical injector 

equipment was installed on the Szeghalom-29 well in 

Füzesgyarmat (Fig. 5).  

 

Fig. 5. Control and Chemical Dosing Equipment  

The injection system is optimized mainly for 

Hungarian gas wells. Thus, the temperature requirement of 

the system was in the (-40°C … 60°C) range. The system 

must be capable of working in EX (EXplosive atmosphere) 

environment with high efficiency. The power source of the 

actuator is solar energy to reach the almost zero emission 

of the system [18]. Fig. 6. shows the P&I Diagram of the 

equipment, where PT is Pressure Transmitter, TT is 

Temperature Transmitter, LT is Level Transmitter and PI 

is Pressure Indicator. 

The following parameters were recorded on a minute 

basis: well siphon pressure, drill pipe pressure, injection 

pipe pressure, well pipe pressure, well pipe temperature, 

soil temperature, temperature of chemicals, controller 

temperature, inverter temperature, chemical tank liquid 

level, inverter current, voltage and frequency [18]. The 

output of the system is the inverter frequency. The 

frequency is proportional to the amount of administered 

inhibitor. 
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Fig. 6. P&I Diagram  

 C. Neural Network  

For the identification the NNARX was used. [9]. This 

network creates a nonlinear model using its inputs. The 

applied regression machine complies with the following 

relation: 

 𝑦𝑒𝑠𝑡 = 𝑓[𝑥(𝑡 − 1), 𝑥(𝑡 − 2), … , 𝑥(𝑡 −
𝑛𝑖), 𝑦𝑟𝑒𝑞(𝑡 − 1), … , 𝑦𝑟𝑒𝑞(𝑡 − 𝑛𝑟𝑜)] () 

where yest(t) is the network output at the tth time istant; x(t-

1) is the used input of the network at t-1st time instant; 

yreq(t-1) is the required output from the network at t-1st time 

instant; ni is the size of used tapped delay line of the inputs; 

and nro is the size of used tapped delay line of the required 

outputs.  

During the model selection, size of the regressor and 

the number of hidden neurons in hidden layers were 

changed. Based on the previous practical experience, the 

number of regressors was 1 or 2, while the number of 

hidden neurons was between 10 and 12. 

The selected raw data has been preprocessed using the 

SciLab software. According to [19], preprocessing can 

consist in a simple transformation or a complex operation. 

The raw data were first filtered by a low-pass filter, then 

normalized. When normalizing the input data, the 

minimum and maximum values of each component are 

selected to cover the set of values and the interpretation 

range of the neural networks. This interval is typically [0; 

1] and [-1; 1]. In the presented case, the [0; 1] interval was 

selected for normalization. 

Three datasets were generated for the detection 

systems. The training set was needed to configure weights 

of the network. One of the most important parameter 

during the training process is the stopping criterion. If the 

training process stops too early, the network is not able to 

learn the data and gives poor estimation when an unknown 

dataset is used. To optimize the network the validation set 

is used. When Mean Squared Error (MSE) is the lowest, it 

is best to stop the training process of the network. The 

third, test dataset is independent from the training and 

validation sets. It is used to compare results for different 

networks. 

Neural networks were trained using the generated 

datasets. To avoid overfitting, the training process was 

stopped at the minimum MSE value. The Levenberg-

Marquard algorithm was used to optimize the ANN in 

Matlab. 

 D. Single Inputs Neural Network Based Detection 

Large number of measurements was performed with 

the previously detailed hydrate forming test equipment 

using different inhibitor materials and gases from 

Szeghalom gas well. From this huge database 50 pieces 

were selected and used for the investigation. During 

measurements mainly values of differential pressure, inlet 

pressure and temperature of gas were saved for later 

investigation.  

After the appearance of gas hydrate molecules in gas 

flow the pressure in pipe section was increasing because 

the agglomerated hydrate reduces the cross section area of 

the pipeline. Therefore fast gas hydrates detection is very 

important. 

From practical perspective, the differential pressure 

gives the most valuable information about the processes in 

the tube. Thus this parameter was used as the input value 

of the alarm system.  

As previously stated, three independent datasets have 

been created. In Table 1. the number of performed 

measurements and the number of datapoints included in 

the different datasets are shown. The scaled, normalized 

differential pressure value was used in datasets as input. 

Table 1. Main Parameters of the datasets 

Dataset 

Number of 

performed 

measurements [pcs] 

Number of 

data points 

[pcs] 

Training dataset 26 2576 

Validation dataset 10 1077 

Test dataset 10 1698 

 

The required output was an artificially generated alarm 

signal, which was created from the differential pressure 

values. The signal corresponds to the 75 percent of the 

maximum value (see Fig 7.)  

 

Fig. 7. Alarm signal (75%)  

Until the actual differential pressure value is under the 

limit, the alarm signal is also zero. When it reaches the 

limit, the signal changes to one. 

The single input NARX network is seen in Fig. 8, with 

the used regressor and the mapping function. In Fig 5. y(t) 

is the network output at the tth time instant; y(t-1..2) is the 

network output at t-1st..2nd time instant; x(t) is the network 
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inputs at the tth time instant; x(t-1..2) is the network input 

at t-1st..2nd time instant; TDL is the tapped delay line, b is 

neuron bias, W is the weight matrix. 

 

 

Fig. 8. Single Neural Network  

 E. Multi Input Neural Network Based Detection 

The previously detailed control and chemical injection 

system has been operated in test mode for 29 weeks under 

continuous monitoring. Several parameters were 

monitored, but only three of them (well pipe pressure, well 

pipe temperature, quantity of inhibitor – inverter 

frequency) influenced the formation of hydration. The 

fourth parameter is the type of the applied inhibitor, which 

was recorded when the inhibitor was placed in the 

container. Demonstration of the effectiveness of each 

chemical in inhibiting hydration was performed with the 

previously described equipment. Depending on the 

inhibition ability of the inhibitors, they were graded on a 

scale of 4 to 1. 

As previously mentioned, three independent datasets 

have been created: training-, validation- and test datasets. 

The main parameters of datasets are shown in the Table 2. 

Table 2. Main Parameters of the datasets 

Dataset 

Number of 

performed 

measurements [pcs] 

Number of 

data points 

[pcs] 

Training dataset 22 2178 

Validation dataset 12 1068 

Test dataset 10 1080 

 

The neural network has four inputs and one output, the 

four inputs are the four parameters listed above, and the 

output is an alarm signal. 

 IV. RESULTS AND DISCUSSIONS 

Performance of the network is adequate if the required 

output (blue graph in Fig. 9) and the regular output (red 

graph on Fig. 9) match each other. MSE gives no 

satisfactory information about the performance, therefore, 

the number of edges in the sample sets were determined by 

rising edge (RE) method and then they were compared. If 

the edges matched each other it can be said that the alarm 

was at the proper time moment. A percentage value can be 

calculated (RE%) from the ratio of number of alarms 

occurred at proper time and number of total alarms [20]. 

 

Fig. 9. Outputs match using test set 

There are several methods, which can be used to find 

edges in one dimension. In this research the Canny edge 

detection method resulted the best calculation, in which the 

first Gaussian derivative is used to approximate the 

optimal finite length filter [21].  

Results of both networks were compared, using the 

relative error of detected rising edges in the simulated 

output of the network and the required alarm signal. The 

comparison of the single input networks is summarized in 

Table 3. 

Table 3. Results of Single Input Network 

Regressor  

Hidden 

neurons 

[pcs] 

Training  Validation  Test  

RE [%] RE [%] RE [%] 

ni = 1; 

nro = 1 

10 96.2 100.0 90.0 

12 96.0 100.0 90.0 

ni = 1; 

nro = 2 

10 73.1 70.0 70.0 

12 73.1 80.0 90.0 

ni = 2; 

nro = 2 

10 73.1 90.0 70.0 

12 69.2 50.0 60.0 

 

The table shows that the network detected possible 

hydrate formation with more than 90% results. The best 

performance was provided by the smallest network. The 

comparison of the multi input networks can be found in 

Table 4. The table shows that the network recognized the 

possible hydrate formation with more than 92% results. 

Table 4. Results of Multi Input Network 

Regressor  
H.neuron

s [pcs] 

Training  Validation  Test  

RE [%] RE [%] RE [%] 

ni = 1; 

nro = 1 

10 72.2 80.0 90.0 

12 95.2 90.0 90.0 

ni = 1; 

nro = 2 

10 99.8 100.0 92.2 

12 95.2 100.0 91.2 

ni = 2; 

nro = 2 

10 82.4 91.4 81.2 

12 81.2 90.7 80.2 

 V. CONCLUSIONS  

There is no publication so far in scientific literature, 

which gives solution for hydrate formation prediction for 
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industry exclusively from either the differential pressure or 

the inhibitor's quality and injected quantity.  

The most effective results of the two presented projects 

are shown in Tables 3 and 4 in bold. For single input neural 

network, the smallest network provided the highest 

reliability in edge detection. In case of multi input neural 

network a larger regressor was the best. Both networks 

performed well, difference between the two results is not 

significant. Further studies are needed to assess which of 

the two methods is better. 
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