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Abstract – In this work, an inspection strategy by a 
vision system is analysed, for the identification of 
surface and aesthetical defects, with reference to 
composite components for automotive and 
aeronautical industrial sectors. Attention is paid to the 
background identification, since the specificity of the 
application requires particular care in order to avoid 
misunderstandings and false negatives during the 
detection phase. The evaluation of the parameters set-
up effects is used for the identification of the main 
uncertainty contributions, which is a strong support 
for the most suitable choice of the monitoring strategy. 
The robustness of the approach is studied with 
reference to several laboratory datasets, representing 
some commonly found issues for an easy in-field 
transfer. To this aim, some commercial tools available 
in Matlab ® environment have been used. The obtained 
results encourage to monitor the variability of the 
performances rates, depending on the qualitative levels 
to be achieved during the operating conditions and on 
the desired reliability of the approach. 
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 I. INTRODUCTION 

The rapid development of artificial vision systems is 
gaining ground in the industrial field, thanks to a series of 
factors like reliability, robustness and relatively low-cost 
impact [1]. Their actual and potential trends of applications 
reside in those activities linked to the product and process 
quality control and to the autonomous driving of robot and 
motion systems. Nowadays, the measurement and 
inspection abilities are often integrated with some artificial 
intelligence tools, which are spreading into the industrial 
facilities since their degree of ease of use is gradually 
increasing [2]. Nevertheless, focusing, as an example, on 

the quality control, the success of this kind of applications 
requires to be fully aware of the vision process, especially 
in the analysis of complex components, in terms of 
defects’ form and dimensions, their detectability – which 
may be compromised by the geometry of the component 
or by its surface characteristics,  and the environmental 
conditions, which may influence the set-up choices [3-4]. 
In this work, an inspection strategy is analysed, for the 
identification of surface and aesthetical defects, with 
reference to composite components for automotive and 
aeronautical industrial sectors. In this type of materials, the 
warp and weft direction of fibres inherently may mislead 
the artificial vision system, pushing towards some tailor-
made solutions for monitoring, which may also contribute 
to the optimization of the technological process [5-8].  

The literature review offers several solutions, making 
the generalization difficult, also of very powerful solutions 
[9]; therefore, a measurement uncertainty based method is 
useful to define the instrumental, technical and functional 
aspects of architecture, together with data processing and 
management techniques to improve the in-field transfer of 
these solutions. A survey concerning the process on the 
whole, evidently requires effort and care: in this work, 
some methodological aspects are faced, useful to define 
the procedure best-practices. In general, a vision based 
quality control procedure is composed of the following 
main steps: (1) Definition of a cluster of defects; (2) 
Analysis of the physical principle for defect identification; 
(3) Optical configuration (4) Design of experiments for 
image acquisition; (5) Images pre-processing; (6) Features 
extraction; (7) Classification/Recognition.  

One of the most critical step lies on step (5), which is 
not usually examined  thoroughly, from the point of view 
of the variability that can affect the results. Traditionally, 
one of the main aim of the pre-processing phase is to focus 
on the Region of Interest (ROI), neglecting all parts of the 
image useless for the inspection of components, like the 
background. This outcome is used to reduce computational 
load and time, also improving the overall accuracy. 
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Furthermore, many tools, which are based on Deep 
Learning algorithms allow realizing both images pre-
processing and defect detection [9-14].  

Defect segmentation of textured surface images poses 
challenges such as ambiguous shapes and sizes of defects 
along with varying textures and patterns in the images. 
[15]. The variation of defect patterns is large; furthermore, 
the images can vary if the image acquisition condition 
changes quite a little. Additionally, the defect size must be 
considered in the determination of defects [16]. Therefore, 
it appears evident the usefulness of focusing on the surface 
of interest, avoiding wasting computational and timing 
efforts by processing areas of the images depicting 
unwanted and worthless background.  

This paper refers to different techniques for the 
background detection and subtraction like semantic 
segmentation and box labelling and highlights limitations 
and benefits of each of them. Datasets have been 
specifically created for this work, suitably sized for 
Transfer Learning procedures, with the aim of 
emphasizing the peculiarities of the objects to be 
investigated more than improving the performances of the 
algorithms that are commercially available. The evaluation 
of the parameters set-up effects is a preliminary effort for 
the definition of the uncertainty budget, with reference to 
image analysis by Artificial Intelligence Techniques, 
according to previous work of the authors [17-18]. In 
particular, it allows to define the factors on which basing a 
correlation between the traditional metrics and the 
uncertainty causes, in order to delimit the area of 
investigation. 

 II. MATERIALS AND METHODS 

Two different techniques for the background detection 
and subtraction are compared: Object Detection and 
Semantic Segmentation methods. 

The dataset used for training, validation and testing is 
composed by 86 images referred to composite specimen of 
different size and geometry. The dataset can be divided 
into two groups: one, where the specimen covers more 
than 80% of the picture (Fig. 1a) and the other, where a 
thinner portion of the composite crosses the whole picture, 
with a width of around 20% of the total (Fig. 1b).  

In the following, the operative procedure for the two 
approaches is illustrated, together with the parameters used 
for comparison purposes. 

 

 a)  b) 
Fig. 1. Examples of pictures from the dataset: a) first group; b) 

second group 

 A. Object Detection: Bounding box 
Object Detection consists of recognizing different 

objects inside an image, labelling them by means of rigid 
boxes. In this work, a Faster Region Convolutional Neural 
Network (Faster R-CNN) is used. It involves the Region 
Proposal Network (RPN) inside the CNN, useful to 
analyse the image to the aim of distinguishing background 
and foreground. This selection is made by means of some 
Anchors, i.e. the rectangular bounding boxes anchoring the 
object to be detected. The performance of the CNN is 
affected by the number and size of these Anchors and by 
the pitch along the vertical and horizontal directions, on 
which the Anchors are distributed onto the image to be 
processed. The number of Anchors has been preliminarily 
optimized on the base of the MeanIoU index (i.e. the one’s 
complement of the Jaccard coefficient) and of the best 
trade-off between the computation time and the spatial 
resolution of the Anchors.  

The CNN used for the features extraction is the 
Resnet50; in particular the layer for the feature extraction 
is the Activation_40_relu, showing a satisfactory trade-off 
between the spatial resolution and the extracted 
functionalities. The general training options and 
hyperparameters are as follows: stochastic gradient 
descent with momentum, as the iteration method for the 
optimization of the differentiable functions, 10 maximum 
epochs, 2 maximum samples of the dataset contemporarily 
processed and an initial learning rate of 10-3.  

By default, the inspection net considers a Negative 
Overlap Range of 0 to 30% and a Positive Overlap Range 
of 60% to 100%. 

 B. Semantic Segmentation 
Semantic Segmentation allows labelling different 

categories of the image pixel by pixel [19]. The 
architecture is based on two neural networks: one for the 
identification of the Region of Interest (ROI) and the other 
one for the features extraction. Once the dataset is ready, 
i.e. the initial manual labelling of the pixels is completed, 
the necessary inputs to create the segmentation net are: the 
size of the images to be analysed (350*350 pixels), the 
number of classes (n.2) and the CNN for the feature 
extraction step (Resnet18). The segmentation net used is 
the DeepLab-V3. 

The two categories that are claimed to be recognized 
are: the Fiber Reinforced Thermoplastic Composite 
(FRTC) and the Background (BG).  

A mandatory pre-processing step before training, is 
balancing the effect of different number of pixels between 
the two classes by suitably modifying the weight of the 
pixels contained in each class, in the final layer of the net. 

For comparison purposes of results, commonly used 
indices are used; the class parameters are [20]: 

• Accuracy (A): ratio between the total pixels 
correctly identified of a class over the number of 
pixel of that class; 
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• Intersection over union (IoU) or Jaccard similarity 
coefficient: measure of the statistical precision 
penalizing the false positives; 

• Boundary F1 countour matching score (BFScore): 
gives an indication of how close the predicted 
boundary of a class matches the ground truth 
boundary. 

The global parameters are defined as follows: 
• Global Accuracy (GA): ratio between the total 

pixel of one class on the total number of pixel; 
• Mean Accuracy: average of the Accuracy values 

of all the classes; 
• MeanIoU: average od the IoU values of all the 

classes; 
• WeightedIoU: average of the IoI of each class, 

weighted with respect to the number of pixel of 
that class; 

• MeanBFScore: average of the BFScore of all the 
classes. 

 III. RESULTS 

In this Section, the effect of the choice of different 
combinations of training options and typology of data 
augmentation is described, in order to individuate the best 
strategies to be applied during the training phase, thus 
avoiding undesired variability. 

 A. Object Detection: Bounding box results 
The net has been trained splitting the dataset into the 

following: 60% training, 20% validation, 20% testing. The 
reliability assessment of the net has been carried out with 
reference to random rotations of the pictures. The resulting 
independent training datasets and corresponding nets are: 

• Base: no image has been modified; 
• 90°: half of the pictures have been rotated by 90°; 
• Gradual: evenly spaced rotations of the images in 

the range 0°-90°. 
Fig. 2 gives an illustrative example of the obtained 

results, with reference to the two different group of images 
of Fig. 1. As it could be expected, a more robust net is 
obtained if the configurations are varied during training. 

Despite the general performance of the Gradual net is 
over 90%, it cannot be assumed as totally satisfactory, 
since the specimen is not framed on its whole.  

As already mentioned, the factors that mostly influence 
the net’s behaviour are the use of a variable learning rate 
and the tuning of the Negative and Positive Overlap 
Ranges. The Learning Rate Schedule has been therefore 
modified and set to 2, the Factor for dropping the learning 
rate to 0.3, the  initial learning rate used for training is 
chosen as 10-4 and a L2 regularization factor of 0.005. 
Furthermore, using a Positive Overlap Range of 0.5 to 1, 
the average precision obtained is 98%.  

 
 

Base 90° Gradual 

   

   
Fig. 2. Examples of the output for Base, 90° and Gradual nets, 

for the first group of images (top line) and second group of 
images (bottom line) 

 
Nevertheless, failure to recognize a part of the 

component being analysed, makes it impossible to identify 
defects in the area that is not considered, leading to a 
change in the investigation strategy (e.g. increasing the 
number of acquired images to be processed or the number 
of anchor boxes) or using different background 
recognition techniques, as shown below. 

 B. Semantic Segmentation results 
The following factors have been studied and compared 

in this subsection: the use of constant versus variable 
learning rate (LR), the training duration, the data 
augmentation and the dataset balancing. 

Constant Learning Rate vs Variable Learning Rate. 
The effect of LR has been studied considering a constant 
value set at 10-4 and a variable one, constant at 10-3 up to 
the first 10 epochs and decreasing by a factor of 0.3 for the 
remaining epochs. Two independent datasets are tested 
and compared, namely Original and Filtered. Both consist 
of images that have been randomly rotated and flipped on 
the X/Y directions. Filtered refers also to contrast-
enhanced images. 

The effect of  different strategies for LR is shown in 
Tables 1 and 2, with reference to the Original dataset, 
being the behavior of all the indices similar for both 
datasets (Original and Filtered). 

 
Table 1.  Global indices for constant and variable LR. 

 Constant LR Variable LR 
GlobalAccuracy 0.8717 0.8977 
MeanAccuracy 0.8785 0.904 

MeanIoU 0.7726 0.8144 
WeightedIoU 0.7323 0.8143 
MeanBFScore 0.5327 0.6145 
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Table 2.  Class indices for constant and variable LR. 

 Class Accuracy IoU BFScore 
Constant LR FRTC 0.9657 0.7763 0.4804 
Variable LR FRTC 0.9848 0.8162 0.5514 
Constant LR BG 0.7914 0.7688 0.5389 
Variable LR BG 0.8232 0.8127 0.6418 

 
A variable LR improves the performances by 2% in 

terms of accuracy and up to 25% in terms of BFScore. The 
increase of BFScore is very useful, as for the separation of 
the sematic areas is concerned. Fig. 3 gives a visual 
representation of the of the results of semantic 
segmentation with constant and variable learning rates, for 
both testing datasets. The positive effect of variable 
learning rate is confirmed. 

 
Input image Constant LR Variable LR 

   

   
Fig. 3. Segmented areas for Original (top line) and Filtered 

(bottom line) images: pink and green areas means FRTC and 
Background, respectively. 

Training duration. Generally speaking, training can be 
considered over if the difference between Validation Loss 
and Training Loss is “small”. It is common practice to 
check that the magnitude of both Loss values is the same, 
in order to avoid underfitting or overfitting conditions. All 
other parameters being equal, Training and Validation 
Losses are reported in Table 3, when the number of 
maximum epochs is changed in the range [15-50]. 

 
Table 3.  Training and Validation Losses for different number of 

maximum epochs. 

Maximum epochs Training Loss Validation Loss 
15 0.0456 0.0745 
30 0.0143 0.0404 
40 0.0150 0.0405 
50 0.0156 0.0266 

 
Besides the gap of 0.03 moving from 15 to 30 epochs, 

no substantial reduction in Loss is registered, although the 
25% increase from test to test. This result is confirmed by 
the values obtained in terms of Global Accuracy, 

Accuracy, IoU, BFScore, whose relative variations are 
negligible. Furthermore, using a too long duration of 
training there is the risk of overfitting. 

Data Augmentation. One of the traditional practice for 
overfitting elimination is modifying the training dataset 
images. Data augmentation has been studied according to 
two different automatic procedures (net_aug e net_aug1). 
Among the many possible automatic methods, the 
following have been chosen: reflection along X and Y 
directions, translation along X and Y direction, of a 
quantity in the range (-20,+20) pixels, rotation of +/-90° 
(Table 4). 

 
Table 4.  Operations for data augmentation. 

 net_aug net_aug1 
X-Reflection YES YES 
Y-Reflection NO YES 
X-Translation [-20; 20] NO 
Y-Translation [-20; 20] NO 

Rotation NO 0-90° 
 
Looking at Tables 5 and 6, in both testing datasets 

(Original and Filtered), data augmentation remarkably 
improve the performances of segmentation in terms of 
GlobalAccuracy IoU and BFscore. As for BFscore 
behavior is concerned, variability of results can be 
attributed to specific areas of images, where the composite 
covers most of the picture. The net without data 
augmentation is called net_noaug. 

 
Table 5.  Data Augmentation indices for the Original dataset. 

Net GA Accuracy IoU BFScore 
net_noaug 89.1% 98.9% 80.7% 54.5% 
net_aug +7.89% -0.32% +13.1% +14.4% 
net_aug1 +9.73% -0.02% +17.5% +27.2% 

 
Table 6.  Data Augmentation indices for the “Filtered” dataset. 
 

GA Accuracy IoU BFScore 
net_noaug 88.3% 97.1% 78.00% 41.6% 
net_aug +7.51% -2.19% +12.7% +22.7% 
net_aug1 +8.16% -1.04% +11.9% +11.1% 

 
Training dataset size and balancing. Further 

improvement techniques refer to the increase of the 
number of images used for training and the correct 
balancing among the different conditions of interest. The 
dataset is composed by 450 images with specimen 
randomly oriented, also changing the illumination 
conditions; four lighting set-ups have been realized.  

In Fig. 4 the performance parameters are compared, 
with reference to 5 different nets, tested on 3 different 
testing datasets. The trained net are called as follow: 

• net_86 is the same net as aug_1, previously cited; 
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• net_214 is trained on 214 images, homogenously 
distributed in the 4 light conditions; 

• net_414 is trained on 414 images, homogenously 
distributed in the 4 light conditions; 

• net_214+86 is trained on 300 images, combining 
those of net_86 and net_214; 

• net_414+86 is trained on 500 images, combining 
those of net_86 and net_414; 

The testing phase has been carried out on the previous 
datasets Original and Filtered, plus an additional one 
(Additional), composed by 50 images extracted from the 
new 450 images acquired. 

 

 
Fig. 4. Effect of dataset size and balancing on performance 

indices for Original, Filtered and Additional testing datasets 

In Fig. 4, net_86 shows the best results among all the 
nets, with reference to the dataset Original; it is quite 
obvious, being the situation where correspondence 
between training and testing is maximized. The behavior 
of the other nets is satisfactory, as well. The comparison 
with dataset Filtered and Additional is important, since 
these datasets are more representative of the in-field 
operative conditions, taking into account different 
illuminations and orientation of the specimen. It is 
important to notice that the score of all nets with increased 
number of images are better with respect to net_86. The 
best net on the whole is net_214+86, being the well-
balanced one. The net_414+86 suffers of overfitting: 
increasing the number of images is useless if the balancing 
is lost.  

As an example, Fig. 5 gives a visual representation of 
the previously described results, highlighting how the 
improvement of results derives from a balanced use of all 
the parameters involved in the procedure. 

 IV. CONCLUSIONS AND OUTLOOK 

In this work, a particular step of an inspection strategy 
by a vision system has been analysed, for the background 
identification of images related to Fiber Reinforced 
Thermoplastic Composite components. In facts, this step 

appears as a crucial  one, due to the specificity of the 
material, which may easily lead to misunderstandings and 
false negatives during the detection phase of surface and 
aesthetical defects in the automotive and aeronautical 
industrial sectors. Two commonly used techniques for the 
background detection and subtraction have been 
compared: Object Detection and Semantic Segmentation 
methods. 
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Fig. 5. Qualitative comparison of the obtained results. 

 

Concerning the first one, the following parameters 
resulted of primary importance: the training dataset 
enlargement, carried out by means of geometric 
transformation of input images; the choice of a variable 
learning rate and the positive overlap range. Although 
general performance is quite satisfactory, reaching a level 
of accuracy of 98%, the inability of covering the entire 
surface of interest leads to makes preferable the use of 
other techniques. On the other hand, with reference to 
Semantic Segmentation,  the factors determining the wider 
variability are ascribable to the choice of a variable 
learning rate, the training duration, the data augmentation 
and the enlargement and balancing of the training dataset. 
The qualitative and quantitative analysis carried out allows 
taking under control the effects of these parameters, on the 
obtained performances rates, thus leading to set-up the 
most robust and reliable strategy, depending on the quality 
levels required during the operating conditions.  

Future work will be devoted to the further investigation 
of the effects of the image quality on both the pre-
processing phase of the approach and on the approach 
itself. 
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