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Abstract – The following paper presents the 

methodology of RIAA equalizer condition analysis 

based on measurements of its amplitude and phase 

characteristics. The RIAA equalizer is used during the 

signal recording and is an integral part of modern 

turntables. It’s parameters determine the quality of the 

music being played. The task is to determine the critical 

values of electronic components (capacitors) based on 

the characteristics of signals observed at the circuit’s 

output. It is considered difficult due to the presence of 

noise, elements’ tolerances, and simultaneous drift of 

several system’s parameters. The presented 

methodology uses the Artificial Intelligence (AI) 

module that implements the task of parameter 

identification. The knowledge exploited by the  

AI-based module is extracted during machine learning, 

based on the dataset obtained during the simulations of 

the equalizer’s computer model. For the decision-

making module, the standard tool for the regression 

tasks, i.e. RBF-type Artificial Neural Network (ANN) 

was used. The obtained results allow for considering 

the potentially high usefulness of the presented 

approach for the parameters identification in 

electronic circuits used in audio technology. 

 

Keywords – RIAA correction, turntable, neural network, 
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 I. INTRODUCTION 

Despite the quickly advancing technological progress 

and hardware-based digital signal processing methods, 

analog circuits are still used in specific audio equipment. 

The recent return of the analog music (in the form of the 

vinyl disc) is both surprising and posing a recurring 

challenge for the diagnostic domain. The quality of the 

sound reproduced with this type of equipment is, from the 

point of view of subjective feelings (depending on the type 

of music played), often perceived as much better than that 

obtained with digital devices. This advantage, especially 

appreciated in the audiophile community, is considered by 

manufacturers of audio devices using analog signal 

processing technology. It therefore requires extremely 

high-quality elements (capacitors, resistors, amplifiers) 

with low tolerances (even below 1%), which makes them 

expensive. In most cases, the analog audio systems 

(correctors, preamplifiers, amplifiers) are discrete, which 

in connection with their high costs makes them an 

important target not only for fault detection, but also 

identification and location of these failures.  

One of the most important components in the analog 

electroacoustic track is the gramophone, equipped with the 

phono cartridge allowing for playing the music recorded 

on the vinyl plate. The method used to create a long-

playing disc affects the frequency parameters of the 

recorded music material. They are represented by the 

RIAA correction curve. Established in 1954 by the 

Recording Industry Association of America, it is a 

standard valid to this day. Consequently, the way the sound 

is stored on the carrier requires applying the normalized 

frequency correction. The playback system must be then 

also equipped with the proper corrector [1]. When it is 

implemented as the electronic circuit using traditional 

analog elements for music processing, its parameters 

depend on their physical characteristics. Therefore, during 

the design of the correcting module, the effects of 

changing the circuit parameters due to the temperature 

changes or passage of time (for instance, by wearing them 

out), should be considered. The main tool for monitoring 

of such a system is the frequency characteristics analysis., 

which allows for evaluating particular spectral 

components on the output of the corrector, where the 

response to the excitation is measured [2]. 

To obtain the desired frequency characteristics for the 

corrector, the specific filter configuration must be 

prepared. For that purpose, internal electronic elements 

(resistances and capacitances) must be selected and their 

values determined. Depending on the used methodology, 

it is then possible to design the corrector circuit that is 

more or less resistant to unfavourable factors (like noise 

and interfering signals) affecting its operational 

parameters. It is also important to determine the actual 

state of the circuit, i.e. whether it still operates correctly, 

according to the design specifications, or is it already 
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faulty. As the most RIAA equalizers are still implemented 

as discrete analog circuits, in the latter case the source of 

the problem should be replaced with its new counterpart.  

The Artificial Intelligence (AI) approaches can be used 

to design the diagnostic system, enabling the fault 

detection and classification based on the available data [3]. 

These are used to train the classification or regression 

machine. In most cases, the data sets contain 

measurements crucial for determining the source, intensity 

of the fault and (preferrably) the actual parameters’ values. 

The data is in most cases obtained from circuit models 

simulated in the specialized software, as introducing faults 

into the actual audio system would be too costly.  

The aim of the paper is to present the method for the 

on-line diagnostics of the analog audio RIAA correction 

filter. The Radial basis Function Artificial Neural Network 

(RBF ANN) was used to identify selected parameters (i.e. 

capacitances) of the designed circuit model. The 

implemented method was trained on the data sets extracted 

from the model simulations. The obtained results prove the 

Parameter Identification (PI) task can be implemented for 

such a circuit with acceptable accuracy. 

The paper structure is as follows. In Section 2 the 

RIAA correctors are introduced. Section 3 presents the 

applied circuit PI method based on the RBF ANN. In 

Section 4 experimental results are shown where the 

dependency between the configuration of the ANN and the 

obtained accuracy is shown., Section 5 covers conclusions 

and future prospects. 

 II. RIAA CORRECTION CIRCUITS 

Production process of the vinyl music disks imposes 

the usage of the correction circuits. The frequency 

correction is used during the sound processing, closely 

related to the recording technology. Its parameters are 

presented in the transmittance (1), where F(s) is the 

transfer function of the correction filter in the Laplacean 

domain of the complex variable s, T1, T2 and T3 are 

normalized time constants, determining properties of the 

filter.  

 𝐹(𝑠) =
(𝑠∙𝑇1+1)(𝑠∙𝑇3+1)

(𝑠∙𝑇2+1)
 (1) 

Characteristics of the filter used during the sound 

playback is the mirror reflection of the characteristics 

applied for sound recording [2]. Both patterns for the 

analog disks are presented in Fig. 1: the dotted line 

represents the recording, while the continuous one stands 

for the playback. Both lines intersect in the middle of the 

audio frequency range (i.e. 1kHz). 

To correctly play the content of the disk, the 

electroacoustic track must have the adjusted corrector in 

the form of filter. Such filters, according to the RIAA 

standard, are either active or passive. The latter are made 

of only passive elements (resistors and capacitors). Active 

filters contain additional elements such as transistors or 

operational amplifiers. The advantage of passive filters, 

appreciated by audiophiles, is the lack of noise and 

distortions introduced by active elements. In the period of 

the greatest popularity of vinyl disks, the former were 

used. Their advantages, thanks to the negative feedback 

loop, included stability of the circuit parameters and low 

sensitivity for elements’ changes. Currently in the analog 

electroacoustic circuits, the passive RIAA filters are used, 

inserted in the audio track. In this case the accurate 

selection of the elements is crucial, as any changes in their 

values significantly influence the played sound quality.  

 

Fig. 1. Frequency characteristics of the recording (dotted curve) 

and playback (continuous curve) correction filters  

Example of the modern passive filter, treated in the 

presented research as the System Under Test (SUT) is 

presented in Fig. 2. It contains six capacitors and resistors 

configured to provide the amplitude and phase 

characteristics ensuring the fulfilment of the requirements 

defined by the relation (1) and illustrated in Fig. 1.  

 

Fig. 2. Schematic diagram of the passive correction filter  

The structure of the circuit reflects the actual 

construction requirements. For instance, as there is no 

single capacitor with capacity of 221μF, it is represented 

by two elements, C5 and C6 (of capacitances, respectively, 

220μF and 1μF). Therefore, there is no point in diagnosing 

the latter, as even its significant deviations are too small to 

be noticed on the output. The same situation is with 

capacitors C2 and C3. Similarly, C1 (with nominal capacity 

of 470nF) is only used to cut off the DC component, so it 

also has been excluded from experiments. The remaining 

diagnosable elements have the following nominal values: 

C2=1.5nF, C3=100pF, C4=6.8nF, R1=1MΩ, R2=1kΩ, 

R3=47kΩ, R4=680kΩ, R5= 510Ω and R6=4.7kΩ.  
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Amplitude and phase characteristics  are obtained after 

exciting the SUT with the sinusoidal pattern with the 

amplitude of 100mV and frequency ranging from 20Hz to 

20kHz. The model of the circuit was created and tested in 

the LTSpice software [4]. 

 

Fig. 3. Amplitude (a) and phase (b) characteristics of the 

correction filter for various values of the capacitor C2 (other 

parameters nominal)  

The experimented presented in the paper are aimed at 

determining deeper knowledge about the possibility of the 

presented SUT’s PI based only on the frequency 

characteristics (fundamental tool for the acoustic circuits 

analysis) obtained at the output node (see Fig. 2). Although 

all elements are considered for identification, it is expected 

that only their subset will be diagnosable (already 

mentioned capacitors C1, C6, resistor R1). Tolerances of 

nominal parameters are low, therefore, assuming their 

sensitivity is high enough (changes are visible on the 

output), any deviation should be detectable by the 

diagnostic system. Characteristics presented in Fig. 3 are 

the source of diagnostic features for the ANN-based 

system. 

 III. RBF ANN-BASED SUT PARAMETER 

IDENTIFICATION 

In the modern diagnostics applications, AI-based 

methods are the standard solution [5]. The aim of such an 

approach is to determine the state of the SUT (either as the 

discrete categories in the case of fault detection or 

identification [6], or the real numbers, indicating the actual 

values of the diagnosed parameters [7]) based on the set of 

symptoms (or attributes), observed in the circuit’s 

response. The aim of the presented research was to 

determine the actual values of the SUT parameters, which 

requires solving the regression task. 

The architecture of the PI module is presented in Fig. 

4. It consists of three subsequent steps: measurement data 

(frequency characteristics) collection, extraction of 

features from them and forming input vectors for the 

regression algorithm. The crucial step for the AI-based 

module is the preparation for training data, from which 

knowledge about the SUT’s state can be inferred. 

Although the architecture itself is generic and could be 

employed to monitor other circuits, the key issue is the 

analysis of the SUT’s structure to identify the most 

challenging faults and adjusting the regression machine 

characteristics. This is be done for each SUT individually. 

 

Fig. 4. The RBF ANN for approximation for all capacitors’ 

values  

The following features were selected (in Fig. 3 

indicated by vertical dotted lines) from the amplitude and 

phase characteristics:  

• amplitude values of the peaks at 10kHz, 15kHz and 

20kHz, 

• minimum phase value and its frequency,  

• phase values at 10kHz, 15kHz and 20kHz.  

These symptoms were identified as bearing enough 

information to make the regression of all diagnosable 

elements possible. 

 A. Data set characteristics 

The AI-based approaches require data sets to extract 

knowledge and further use it to evaluate actual values of 

parameters. The set contains vectors of symptoms, 

extracted from the simulated SUT responses after setting 

the desired parameters’ values. In this way it is possible to 

perform the supervised learning for the selected regression 

machine. 

During simulations, tolerances of used elements were 

considered. Even in the nominal state, the SUT elements 

had values randomly disturbed with the uniform 

distribution. The tolerance margins were set to 5% (in both 

directions) of the values provided by the designer (which 

is the maximum reasonable value for the high-quality 

equipment). Generation of the data set consisted in 

repeated circuit simulations after introducing the single 

fault into the structure (including the nominal state). Each 

capacitor was represented by 11 simulations for its value 

deviating up to 90% from the nominal state (in both 

directions). The experiments were performed only for the 

single fault (i.e. with one selected parameter being the 

problem and all other within tolerance margins). This gives 

the data set D (2) with n=132 vectors containing m+k=15 

values each (m=8 attributes ai – and k=12 actual values of 

the diagnosed elements pj).  
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 𝐷 = [
𝑎11 ⋯ 𝑎1𝑚 𝑝11

⋯ 𝑝1𝑘

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚 𝑝𝑛1

⋯ 𝑝𝑛𝑘

] (2) 

After creating the set D it had to be divided into two 

subsets: L for training the regression machine and T for 

testing it. During the cross-validation, the set D was 

repeatedly divided into two subsets in the relation 5:1, both 

representing the same amount of symptoms vector for each 

capacitor. This way each set L contained 108 examples, 

while the set T – 24 examples. 

 B. Regression algorithm 

In the regression task the RBF ANN was used. It is the 

simple neural network aimed specifically at approximating 

real-valued functions. Its structure contains the single 

hidden layer with adjustable number of neurons. The 

network is the well-established tool in the diagnostics [8]. 

It was selected in the contrast to deep learning 

architectures, which have proven the most successful, but 

require large amounts of data [9]. The conducted 

experiments assumed the size of data sets is limited (as 

described in section III.A), so another outcome is 

knowledge about the capacity of the RBF-ANN trained on 

small data sets. 

 

Fig. 5. Architectures of the RBF ANN for the parameter 

identification: single network (a), multiple networks (b)  

In the presented research two variants of the diagnostic 

module were prepared. The first one is a single network 

approximating all parameters (further called Single 

Network Approximator - SNA). The second approach is 

the separate network for each parameter approximation 

(further referred to as Individual Network Approximator - 

INA). Structures of such networks, are presented in Figure 

5, consists of two layers: hidden with the Gaussian (RBF) 

activation functions and the output one, with the linear 

activation function. The number of inputs depends on the 

number of symptoms in the vector a (here 9). The number 

of neurons in the hidden layer is adjustable during the 

design and training of the network and was the optimized 

parameter during our research. The produced value of the 

i-th parameter’s �̂�𝑖  estimation is confronted against its 

actual value pi during the regressor training (to adjust the 

weights’ values). The ANN architectures were 

implemented in the Matlab environment, using the 

Artificial Neural Networks toolbox.  

The training efficiency is evaluated using the Mean 

Square Error (MSE), for the single evaluated parameter 

(pi) measured as follows: 

 𝑀𝑆𝐸(𝑝𝑖) =
1

|𝐿|
∙ ∑ (𝑝𝑖𝑗 − �̅�𝑖𝑗)

2|𝐿|
𝑗=1   (3) 

where �̅�𝑖𝑗 is the average value of the i-th parameter. The 

overall MSE (used during training the combined network 

from Fig. 5a) is the sum of particular errors for each output.  

The regression quality during the testing is measured 

for each element separately, using the normalized score (4) 

[10]. Its usage is preferred when multiple various 

parameters are approximated, as efficiency of different 

regression modules can be compared. Here 𝑝𝑖𝑗 is the actual 

value of the i-th SUT parameter for the j-th symptoms 

vector from the set, �̂�𝑖𝑗  is its estimated value and �̅�𝑖𝑗 is the 

average of the actual values. The maximum value of the 

accuracy is 1, therefore the approximation is practically 

usable if acc(pi)>0.5. Negative values mean the 

approximation outcome is useless. 

 𝑎𝑐𝑐(𝑝𝑖) = 1 −
∑ (𝑝𝑖𝑗−𝑝𝑖𝑗)

2𝑛
𝑗=1

∑ (𝑝𝑖𝑗−�̅�𝑖𝑗)
2𝑛

𝑗=1

 (4) 

 IV. EXPERIMENTAL RESULTS  

The presented diagnostic system was trained and tested 

on data sets collected from the RIAA filter simulations. 

Experiments included verification of ANN 

hyperparameters, including the number of neurons in the 

hidden layer and the width of the Gaussian curve operating 

as the activation function. Both architectures from Fig. 5 

were also compared  

 A. Parameter identification efficiency 

The first experiment was aimed at determining if it is 

possible to train RBFANN for the accurate PI task in 

conditions described in Section II. Initially, the INA 

configuration was tested as considered the safer one (for 

each parameter the weights were adjusted separately). This 

requires creating 12 networks, training them on the set L 

and determining their generalization ability using the set 

T. During the training it was important to observe MSE, as 

if its value was high (i.e. not lower than 0.1), the regression 

machine was probably unable to follow parameter 

changes. This could also be confirmed while observing the 

convergence of the training process. The best results 

obtained for capacitors and resistors are in Table 1 and 2, 

respectively, where MSE is the squared unit of the 

subsequent quantity (either resistance or capacitance).  

Values in both tables are averages for 5 cross-

validation trials. Networks for capacitors C5 and C6 and 

resistor R1 were not trained correctly, which suggests their 

performance on the testing set may be low. 

p1 p12 p1 p12 

a1   .... a7  a8 a1   .... a7  a8 a1   .... a7  a8 (a) (b) 
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Table 1.  Training results for capacitor-identification RBF-ANN. 

Parameter C1 C2 C3 

MSE 1.33e-3 7.12e-11 2.59e-10 

Parameter C4 C5 C6 

MSE 2.0e-17 7.8e+3 2.81e+2 

Table 2.  Training results for resistor-identification RBF-ANN. 

Parameter R1 R2 R3 

MSE 75.72 1.31e-14 2.76e-17 

Parameter R4 R5 R6 

MSE 4.34e-6 4.21e-10 1.71e-10 

 

Tables 3 and 4 show approximation results for 

subsequent parameters. The worst results are for elements 

C1, C5, C6, R1 and R4 , which confirms their poor training 

outcomes. It also indicates that MSE obtained during the 

training is a good prognostic for the generalization ability, 

The proposed method is useful to monitor multiple 

parameters (especially resistors), but to improve its 

accuracy, the amount of data must be increased. The 

second idea is to increase the amount of symptoms 

collected from new accessible nodes or by adding the 

analysis domain. Incorporation of the measurable nodes is 

easy in this case, as the circuit is discrete and all nodes are 

available for use.  

Table 3.  PI results for capacitor-identification RBF-ANN. 

Parameter C1 C2 C3 

acc -1.89e-1 0.63 1.01e-2 

Parameter C4 C5 C6 

acc -9.38e-1 -3.45 -3.44 

Table 4.  PI results for resistor-identification RBF-ANN. 

Parameter R1 R2 R3 

acc -2.85e-1 0.54 0.98 

Parameter R4 R5 R6 

acc -1.95e-1 0.58 -3.4e-2 

 B. Optimization of the RBF ANN-based regression 

The most important parameter of the network is the 

number of neurons |N| in the hidden layer, strongly 

depending on the size and complexity of available data. 

During the training, neurons are subsequently added to 

improve the MSE until their maximum number (equal to 

the number of examples in the set) is reached. Observation 

of this parameter allows for evaluating the training 

efficiency (especially regarding convergence of the 

process). 

The design aims at determining the minimum number 

of neurons ensuring the acceptable accuracy. Example of 

the training process for the capacitor C1 is presented in Fig. 

6. The optimal number of units here is 90. Repeating 

experiments for all networks (aimed at approximating 

values of subsequent parameters) allowed for determining 

the optimal number of neurons, i.e. the minimal number 

ensuring the maximum possible accuracy. Results for 

capacitor-aimed ANNs are in Table 5, while their 

counterparts for resistors – in Table 6. In the case of C5 and 

C6 the convergence was very slow, stopping at 50 neurons. 

The same was for the resistor R1. This is in line with low 

MSE values of these elements (see Table 1 and 2). 

Example of the training process for R1 is in Fig. 7. 

 

Fig. 6. Dependency between the number of neurons and MSE 

(capacitor C1) 

Table 5.  Optimal number of neurons for capacitor-

identification RBF-ANN. 

Parameter C1 C2 C3 C4 C5 C6 

|N| 100 104 104 105 50 50 

Table 6.  Optimal number of neurons for resistor-identification 

RBF-ANN. 

Parameter R1 R2 R3 R4 R5 R6 

|N| 105 90 100 98 96 88 

 

 

Fig. 7. Dependency between the number of neurons and MSE 

(resistor R1) 

194Editors: Dr. Zsolt János Viharos; Prof. Lorenzo Ciani; Prof. Piotr Bilski  &  Mladen Jakovcic



17th IMEKO TC 10 and EUROLAB Virtual Conference 

“Global Trends in Testing, Diagnostics & Inspection for 2030”  

October 20-22, 2020. 

The second experiment was aimed at determining the 

optimal width of the Gaussian activation function. The 

range between 0.1 and 100 was checked and the set of 

optimal values were was around 1 (which is usually the 

default value). 

 C. Comparison between ANN architectures 

The ANN-based fault regression machine may also be 

based on the single network, combining available input 

symptoms with all diagnosed parameters (in this case 12). 

In this case the diagnostic module is also more compact, 

having much smaller number of neurons used (only in one 

network with the maximum number of neurons depending 

on the size of the training set). Unfortunately, the limited 

data set available for the network is not enough to train it 

properly. The training process converges very slowly and 

ends with unacceptably high MSE (the average value 

being around 680). Example of the training process is 

shown in Fig. 8. Based on the obtained results, SNA was 

considered as unable to accurately diagnose the RIAA 

filter, unless more data are added. 

 

Fig. 8. Training process of the SNA 

 V. CONCLUSIONS 

The presented research proves the RBF ANN can be 

used as the PI machine for the diagnostics of the RIAA 

correction filter. Three factors influence the regression 

accuracy: amount of available symptoms’ vectors for 

training, ANN structure (the number of hidden RBF 

neurons) and number of symptoms allowing for 

distinguishing between different faults.  

During the confrontation between two ANN 

architectures used for the task, only the more complicated 

INA structure has proven useful. Its advantage is 

especially visible in the limited data scenario, where 

separate approximators are able to learn at least part of the 

SUT parameters. Not all of them are important from the 

practical point of view (for instance, C1 and R1 are used 

only to cut off the DC component, so their identification is 

not important). Also, pairs of capacitors C2 with C3, and C5 

with C6 are hardly distinguishable, because they should be 

treated as single elements. Therefore the obtained results 

are satisfactory, though additional work has to be done to 

improve the PI efficiency. 

The future work should include application of 

additional approximation algorithms, introducing multiple 

faults and testing the approach for actual RIAA filter, 

which could confirm, if the available circuit models are 

accurate enough to diagnose the real-world systems. Also, 

other analog circuits (such as audio amplifiers) should be 

tested.  
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