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Abstract –Anomaly of rotating machines are usually 

inferred from vibration measurements. However, it is 

not easy to determine the normal range for 

conventional crest factor or primary component 

analysis. In this paper, we try to use the Artificial 

Neural Network technique to make judgments based 

on the degree of deviation from the learned normal 

range. Specifically, we evaluated VAE which 

compresses the measured sensor data into the latent 

space of smaller number of dimensions with standard 

normal distributions. We propose an anomaly score 

which indicates the deviation from the center of the 

normal distribution using linear VAE calculation and 

dimensionality compensation. The proposed anomaly 

score shows good performance with several test data 

sets and measured real data sets. 

 

Keywords –Variational Auto-Encoder, Bearing Anomaly 

Detection, Anomaly Score, Latent Space. 

 

 I. INTRODUCTION 

Anomaly detection of rotating equipment such as pick-

and-place machines, robots, machine tools, pumps, fan 

blowers, etc. is the key technology for stable operation of 

equipment and improved operation. 

The most common means for detecting the state of a 

rotating device is to measure the vibration of the device 

with a vibration sensor such as an accelerometer. The 

device condition can be represented by an anomaly score 

which is derived from the normal vibration waveforms or 

frequency spectra. This anomaly score will make it 

possible to predict the time of fault. Further, when the 

score rises, a precise diagnosis of the vibration waveform 

can be triggered and the cause of the anomaly can be 

analyzed. 

As an anomaly score, several quantities have been used 

so far such as the peak value, root mean square (RMS) 

value, crest factor, skewness, and kurtosis of the time 

waveform of vibration. However, anomalous vibrations of 

rotating equipment can be caused by various situations 

such as misalignment, imbalance, gear meshing, pump 

cavitation, bearing vibration, and damage. As a result, 

various waveforms and frequency spectra appear. Any 

simple quantity cannot be an accurate indicator of the 

degree of anomaly. Further, even if a quantity or a 

combination of such quantities that can accurately express 

the anomaly degree is found for a specific usage case, it 

may not be suited for other cases. It must be reviewed and 

adjusted for specific application cases. 

Recently, methods for diagnosing factory equipment 

have been developed using various machine learning and 

deep learning methods [1,2]. There are also researches 

specialized in bearings whose conditions inevitably 

change during operations, such as data analysis methods 

that extract and classify features using normal and 

abnormal vibration data for supervised learning, and 

cluster analysis using many observation data for 

unsupervised learning [3]. However, in actual equipment, 

vibration data etc. vary greatly depending on usage 

conditions such as load. So, it is difficult to prepare data 

for judging individual normality/abnormality in advance 

[4]. 

Therefore, it is practical that the observed value in the 

early stage of operation of the device is treated as normal 

data. Observed data during operation is analyzed, and the 

deviation degree from the normal data is used as an 

anomaly score. Specifically, variational auto-encoder 

(VAE [5]) can be employed to transform the observed data 

into a standard normal distribution in a smaller 

dimensionality [5-8] and to calculate the anomaly score 

corresponding to the deviation from the center of 

distribution in a way of unsupervised learning. The authors 

tried the VAE method exhaustively, and propose a method 

to calculate the anomaly score with linear VAE processing 

and compensation for latent space dimensionality. 

Section 2 shows the basics of VAE and the method of 

calculating the anomaly score. Section 3 shows the details 

of the processing. Section 4 shows the results for the 

simulated and measured data. And Section 5 concludes. 

 II. VAE AND PROPOSED ANOMALY SCORE 

VAE performs information compression with the 

encoder that maps multidimensional input values into a 

latent space of a small number of dimensions (Fig.1). In 

order to properly compress the information, the decoder 

returns the compressed data back to the original 

dimensions while minimizing the loss function such as 

square error. Furthermore, by adding Kullback-Leibler 

divergence term to the loss function, the distribution in the 

latent space is trained to be the standard multidimensional 

normal distribution. Therefore, when VAE is well trained 
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with normal data, the distribution in the latent space 

becomes very close to the standard normal distribution. 

Data after the learning period, which may include 

anomalies, is to be evaluated by a multidimensional 

deviation in the latent distribution. It is expected that 

anomalies will deviate significantly from the standard 

normal distribution. Therefore, the degree of anomaly can 

be evaluated by the deviation from the origin of the latent 

space. 
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Fig. 1. VAE and latent space.  

In the case of anomaly detection of bearings, it is 

usual to acquire vibration waveforms using acceleration 

sensors. Data is collected at regular intervals (e.g. 10 

minutes) with some sampling frequency (e.g. 20 kHz). 

Since features often appear in frequency spectrum, VAE 

learning is performed by converting waveforms into 

frequency amplitude spectra. If we input newly acquired 

data to the learned encoder, we can obtain the anomaly 

score for that data (Fig. 2).  

The anomaly score is calculated by the following 

formula as the VAE deviation (𝑉𝐷) from the origin. 

𝑉𝐷 = √
1

𝐷𝑐𝑚𝑝𝑠
∑ (

𝑥𝑖−𝑥𝑖̅̅ ̅

𝜎𝑖
)

2
𝐷
𝑖=1 ,   (1) 

where 𝐷 is the dimensionality of the latent space, 𝐷𝑐𝑚𝑝𝑠 

is the dimensionality compensation described later, 𝑥𝑖 is 

the value of dimension 𝑖 in the latent space, and 𝑥𝑖  and 

𝜎𝑖  are the mean and the standard deviation of the 

distribution along the dimension 𝑖. 
If there is no correlation between the basis functions 

(i.e. input data patterns corresponding to each latent 

dimension), it can be calculated as Euclidean distance 

(𝐷𝑐𝑚𝑝𝑠=1). However, if there is correlation in part or in full, 

the summed part in the square root of 𝑉𝐷  increases in 

proportion to the number of dimensions. The correlation 

coefficient between basis functions is calculated as follows. 

  𝑅(𝑓𝑖, 𝑓𝑗) =
1

𝑁
∑ 𝑓𝑖(𝑛) 𝑓𝑗(𝑛)𝑁

𝑛=1 ,        (2) 

where N is the number of frequency components (the 

number of input sequence to VAE), 𝑓𝑖 is a basis function 

corresponding to the dimension 𝑖, of which the mean is 

zero and the variance is normalized to one. A signal 

component that matches one of the basis functions affects 

all dimensions by this correlation coefficient. 

As a result, the effect of the following total value 

𝐷𝑐𝑚𝑝𝑠 appears in the square root of the anomaly score. To 

compensate for it, it is necessary to divide by 𝐷𝑐𝑚𝑝𝑠 when 

calculating the anomaly score. 𝐷𝑐𝑚𝑝𝑠  is one when all 

basis functions are orthogonal (no correlation), and is 

equal to 𝐷 when all the basis functions are same. 

𝐷𝑐𝑚𝑝𝑠 =
1

𝐷
∑ ∑ 𝑅2(𝑓𝑖 , 𝑓𝑗)𝐷

𝑗=1
𝐷
𝑖=1           (3) 
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Fig.2. Processing flow. 

 III. VAE PROCESSING DETAILS 

Since the measured values may be noisy, averaging is 

desirable as the preprocessing. The loss function of VAE 

is non-linear and the input value to VAE has the optimum 

range. Therefore, we converted the whole input values into 

the standard normal distribution. If the input has a large 

dynamic range, it may be desirable to perform non-linear 

compression such as a logarithmic compression and then 

perform the conversion to the standard normal distribution 

(used in the case of IMS data described later). 

The structure of VAE is set to three layers (each one 

for the input layer, the intermediate layer, and the output 

layer) referring to the Keras example [9] (Fig. 3). All of 

the activation functions are set to be linear in order to 

obtain the anomaly score that changes linearly with respect 

to the input. For this reason, the distribution in the VAE 

latent space is close to but may not be exactly the standard 

normal distribution.  

The number of inputs of the encoder and the outputs 
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of the decoder is 512 (the number of frequencies in the FFT 

result). As for the intermediate layer, the smaller the 

number of units, the shorter the calculation time and the 

smaller the memory usage. It is better to use a small 

number within a range that shows sufficient 

expressiveness. As a result of examination using test data 

(D-1 in section 4.1), 16 is selected as the value which 

shows a sufficient margin within the stable range. 

Ideally, the number of dimensions of the latent space 

must be adjusted to the number of independent 

components of the target signal, but the larger it is, the 

more the processing time and the memory usage. As a 

result of examination using the test data (D-1), there are 

cases where a change cannot be detected with one 

dimension. We select two for dimensionality, as almost the 

same temporal change is obtained as the anomaly score for 

three or more dimensionality. The units in the latent layer 

in Fig. 3 mean that there are two units in two dimensions 

because these are values corresponding to the average 

output and the standard deviation output for each 

dimension. 
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Fig.3. VAE structure. 

 

It is necessary to set the number of times of learning 

(epoch) for VAE that sufficiently converges. Checking the 

actual convergence state (loss change), we set 1000 as a 

sufficient learning epoch. As for the learning batch size, 

the larger the number, the shorter the learning time. 

However, if it is large, the result may vary greatly and 

stable results may not be obtained, so we select one for the 

batch size. 

 IV. TEST DATA AND RESULTS 

We determined the hyperparameters of VAE as 

described in the previous section, using the measured data 

D-1 (D-1 and D-2 are provided by Device & System 

Platform Development Center Co., Ltd.) as the training 

and test data. To evaluate the anomaly score, 80% of data 

are used to train VAE from the beginning part of each data, 

and the whole sequence of each data are fed to the VAE 

encoder to obtain the anomaly score change.  

 

A. Test Data: Harmonics with white noise 
In order to confirm that the anomaly score with the 

selected hyperparameters can properly show anomalies, 

we applied it to a simple signal, a vibration signal 

consisting of three overtone frequency components (125 

Hz as the fundamental tone) with 10% amplitude 

perturbation and with white noise (Fig.4). The amplitude 

ratios of the three tones and the noise was set to 4:6:2:1. 

 
 

For the first third For the second third For the last third  
Fig.4. Test signal: Harmonics with white noise. 

 

The time signal of this spectrum is duplicated three 

times with amplitude change of 1, 1.5 and 2. The peak and 

the RMS increase in proportion to the amplitude (Fig.5). 

The crest factor (i.e. peak/RMS) and the envelope crest 

factor are getting smaller rather than larger, because the 

RMS is increasing irrelevant to the peaks owing to the 

constant noise (Fig.6). The envelope crest factor is 

calculated with creating the envelope of the time 

waveform. VAE uses the first 1/3 period as the learning 

data (Fig.7). The second 1/3 period and the last 1/3 period 

show rises by the same amount (corresponding to 0.5 times 

amplitude increase). The dashed purple line indicates the 

triple of the standard deviation, above which can easily be 

judged as anomaly. 

 

 

 
Fig.5. Peak and RMS of Harmonics. 
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Fig.6. Crest factor and envelope crest factor of test signal 

Harmonics. 

 

3σ  

 

Fig.7. VAE anomaly score of test signal Harmonics. 

 

As another test signal, we raised the fundamental tone 

of the same signal in Fig.4, 125 Hz, 131.25 Hz and 137.5 

Hz in 5% increasing steps. Of course, the peak, RMS, the 

crest factor, and the envelope crest factor do not change 

(Fig. 8-9). However, VAE shows large stepwise changes 

(Fig. 10), although the changes are not proportional to the 

frequency changes. 

 

  
Fig.8. Peak and RMS of Harmonics with frequency change. 

  
Fig.9. Crest factors of Harmonics with frequency change. 

 

3σ  

 
Fig.10. VAE anomaly score of Harmonics with frequency 

change. 

 

B. Test Data: CWRU 
   We applied VAE to a noisy signal obtained by real 

bearing measurement (X105_DE of CWRU public data 

with periodic impact [10]). As the CWRU data is 

continuous measurement data, we divided them into 

sections of 1024 time points and processed as separate 

sampling data. To add variations to the data, we changed 

the amplitude in three steps (1, 2 and 3) for different 

continuing parts of data. 

   The peak and RMS show clear change of amplitude 

(Fig.11). No significant change can be identified in the 

crest factor and the envelope crest factor (Fig.12). VAE 

used the first third of the data for learning. Although the 

fluctuation of Fig. 13 is large, the center of the fluctuation 

corresponds the amplitude change of 1, 2, 3. 

 
 

 
Fig.11. Peak and RMS of stepwise changed cyclic impact. 
 

 
Fig.12. Crest factors of stepwise changed cyclic impact. 
 

 
Fig.13. VAE anomaly score of stepwise changed cyclic impact. 

 

C. Test Data: D-1 
We applied VAE to the measured bearing data, of 

which the condition is known. The real measurements 

collected 2048 points with sampling at 25 kHz, every four 

hours. To average the amplitude spectra, FFT was applied 

three times for three segmented 1024 point data from 2048 

points. The averaged amplitude spectra were input to the 

VAE encoder. 

The peak, the RMS, the crest factor and the envelope 

crest factor show clear changes (Fig. 14-15). Actually, the 

tested bearing was replaced at around 2020-03-12, and the 

pillow block was replaced at around 2020-03-21. The 

anomaly score also shows the similar change (Fig.16). The 

hyperparameters of the VAE were searched using this data 

to output stable anomaly scores as described in the 
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previous section. 

 

 

 
Fig.14. Peak and RMS of test signal D-1. 

 

 
Fig.15. Crest factor and envelope crest factor of test signal D-1. 

 

 

 
Fig.16. VAE anomaly score of test signal D-1. 

 

D. Test Data: D-2 
We also applied VAE to another measurement data set 

D-2 which was obtained using a bearing different from D-

1. VAE in Fig.19 shows clear changes which are not so 

clear in the peak/RMS (Fig.17) and the crest factors 

(Fig.18). Especially, anomaly score changes in the early 

stage show the initial fluctuations, and the middle table 

shape shows some anomaly state which is not so clear in 

the other four plots. Also, the tail of the anomly score 

indicates the continuing and rising anomalous state. 
 

  
Fig.17. Peak and RMS of test signal D2. 

  
Fig.18. Crest factor and envelope crest factor of test signal D-2. 

  
Fig.19. VAE anomaly score of test signal D-2. 

 

E. Test Data: IMS 
We also applied another measured bearing data (IMS 

data [11], 1st_test bearing 4 x sensor). The 20480-point 

data (20 kHz sampling) is divided into twenty 1024 

intervals and the average amplitude spectrum of them was 

applied to the VAE encoder. Since the signal spectrum has 

a strong line property, the amplitude spectrum was 

logarithmically compressed to flatten the amplitude 

distribution. 

The three results (Fig. 20-22) show similar change in a 

broad sense. In VAE, the leading data (150 samples) are 

used for learning. The rise of VAE anomaly score at the 

final stage is clearer than others. 

 
 

 
Fig.20. Peak and RMS of IMS-1-4x. 

 
 

Fig.21. Crest factors of IMS-1-4x. 
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Fig.22. VAE anomaly score of IMS-1-4x. 

 

 V. CONCLUSION 

The proposed structure of VAE and calculation method 

of anomaly score have shown its effectiveness for tested 

cases: three frequency component cases of amplitude 

182Editors: Dr. Zsolt János Viharos; Prof. Lorenzo Ciani; Prof. Piotr Bilski  &  Mladen Jakovcic



17th IMEKO TC 10 and EUROLAB Virtual Conference 

“Global Trends in Testing, Diagnostics & Inspection for 2030”  

October 20-22, 2020. 

change and frequency change; periodic signal case; actual 

bearing measurement cases. The proposed anomaly score 

reflects the measured data linearly, and its effectiveness 

was confirmed for tested cases. The hyperparameters 

chosen for typical measured data are also applicable to 

other similarly conditioned data. The most important 

feature of the method is the unsupervised learning scheme 

and the capability of real time anomaly inference by 

learning only the data of the initial normal operation period. 
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