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Abstract – This paper proposes a hybrid model (HyM) 

for a heating, ventilation and air conditioning (HVAC) 

system installed in a passenger train. This HyM fuses 

data from two sources: data taken from the real system 

and synthetic data generated using a physics-based 

model of the HVAC. 

The physical model of the HVAC was developed to 

include the sensors located in the real system and new 

virtual sensors reproducing the behaviour of the 

system while a failure mode (FM) is simulated. 

Statistical features are calculated from the selected 

signals. These features are labelled according to the 

related FMs and are merged with the features 

calculated from the data from the real system. This 

data fusion allows us to classify the condition indicators 

of the system according to the FMs. The merged 

features are used to train a neural network (NN), which 

achieves a remarkable accuracy. 

Accuracy is a key concern of future research on the 

detection and diagnosis of a multiple faults and the 

estimation of the remaining useful life (RUL) through 

prognosis. The outcome is beneficial for the proper 

functioning of the system and the safety of the 

passengers. 

 

Keywords – Predictive maintenance, fault detection, 

railway, hybrid modelling, fault modelling, synthetic 

data. 

 I. INTRODUCTION 

Diagnostics and prognostics are the main techniques of 

prognostics and health management (PHM). Diagnostic 

techniques identify a faulty component by detecting and 

isolating a fault; the relationship between the data taken 

from the system and their degradation identifies the faulty 

part based on a pre-selected failure mode (FM). Thus, 

diagnostics includes failure mode and effect analysis 

(FMEA) [1], [2]. Diagnostics starts once a fault or 

abnormal behaviour is detected. The aim of prognostics is 

to estimate the remaining useful life (RUL) by assessing 

the changes in the behaviour of the system over time. RUL 

estimation evaluates the accumulation of degradation and 

predicts the future health state. If there is evidence of a 

failure, information from data observed in diagnostics is 

analysed to identify and assess the damage before RUL 

estimation. 

There are three main approaches to estimate RUL 

through prognosis [3]: data-driven approaches, model-

based (physics-based) approaches, and hybrid model 

approaches (HyMAs). These approaches integrate 

engineering experience and expert knowledge, techniques 

used in the reliability domain. 

 A. Data-driven approaches 

Data-driven approaches use mathematical models and 

weight parameters to predict the future state of a system. 

The prediction is calculated using data from the sensors 

embedded in the real system. There are many techniques, 

but they can be divided into two categories [4]. The first 

are artificial intelligence approaches, including neural 

networks (NNs) and fuzzy logic. The second are statistical 

approaches, including linear regression and hidden 

Markov model. These techniques can accurately predict 

RUL, but they need to be trained using a large amount of 

historical information taken from the operational data 

labelled to ease the extraction of data at different stages of 

system degradation. Research on data-driven approaches 

for fault diagnosis in HVAC chillers includes work by 
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Choi et al. [5] and Madhavi Namburu et al. [6]. More 

recently, data-driven methods were used for fault detection 

and diagnosis in air handling units by Montazeri and 

Mohamad Kargar [7]. Zhenxin Zhoy et al. [8] presented a 

comparison study of basic data-driven fault diagnosis 

methods for a system with variable refrigerant flow. 

 B. Model-based (physics-based) approaches 

Model-based approaches or physics-based models 

estimate RUL, building mathematical models from the 

physical system to give a physical understanding of the 

monitored system [4]. These models incorporate such 

characteristics as material properties and thermodynamic 

and mechanical responses. At times, these approaches 

cannot be applied because they need too many resources, 

especially in complex systems or processes where some 

key parameters are difficult or impossible to obtain. 

Nevertheless, an accurate physics-based model is more 

effective than other approaches [9]. A dynamic model of 

an HVAC system for fault detection and diagnostics (FFD) 

was proposed by Bendapudi et al. [10]. Poon et al. [11] and 

Yul Chu and Avestruz [12] also developed model-based 

approaches. 

 C. Hybrid modelling 

Hybrid modelling approaches combine model-based 

approaches and data-driven approaches. HyMAs reduce 

the amount of historical information required to train a 

data-driven model and the information needed for a robust 

model. Applications of hybrid models for fault detection 

include work by [13], [14], and [15].  

This paper presents a methodology using hybrid 

modelling. The system studied and modelled is an HVAC 

system installed in a passenger vehicle of a train. It keeps 

the vehicle’s interior within a comfortable temperature 

range, with an acceptable concentration of CO2. A failure 

in this system directly affects people’s comfort and safety; 

their safety is more important than efficiency or reliability. 

Previous work includes some dynamic models of HVAC 

systems and chiller systems for fault detection [16], [17]. 

The paper proceeds as follows. Section 2 describes the 

methodology of the proposed hybrid modelling. Section 3 

describes the physics-based model developed for data 

generation. Section 4 explains the process to prepare the 

data for feature extraction. Section 5 takes and classifies 

features for training, validating, and testing the data-driven 

model. Section 6 discusses the results. Section 7 concludes 

the work and suggests future work to implement the 

proposed HyMA. 

 II. HYBRID MODELLING METHODOLOGY 

The maintainers of the HVAC system under study are 

currently using approaches based on data, but they must 

use preventive maintenance for critical components 

because there is insufficient information to train the RUL 

estimation model. Maintainers replace critical components 

in early stages of degradation for safety, environmental, 

and economic reasons, thus complicating the obtention of 

run-to-failure data. The HyM is developed to overcome the 

lack of data. It improves the ability to detect FMs and 

reduces hidden FMs, metaphorically known as “black 

swans” [18]. 

The hybrid model of the HVAC system is developed in 

Matlab R2019b; the proposed methodology for training, 

validating, and testing is shown in Figure 1. A physics-

based model is used to generate synthetic data in healthy 

and faulty states based on the operational modes being 

modelled. The physics-based model has sensors located in 

the real system and virtual sensors which depend on the 

data measured in the real system. These virtual sensors 

generate key features for the detection of faults. Thus, the 

measured data must be loaded in the physics-based model 

to simulate the response of the virtual sensors. The output 

of these simulations is recorded in a dataset which contains 

the data taken from the real system and the data obtained 

from the virtual sensors. The physics-based model can also 

generate synthetic data in healthy and faulty states by 

introducing the required inputs. Every simulation 

generates a timeseries of every signal selected; the data 

related to a simulation are individually saved in a table. 

 

Fig. 1. Scheme of proposed methodology to build data-driven 

model 

The data-driven models presented in this paper use 

supervised learning methods. Once the data are generated 

by the physics-based model and organised in a table, each 

simulation is labelled with a fault code indicating the 

presence of a fault and the type of fault. The features are 

then extracted from every signal loaded in the table. Thus, 

the features are related to a fault code and are used to train, 

validate, and test the data-driven model. The dataset 
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containing the features related to a simulation is named the 

“fingerprint”. 

 III. HVAC SYSTEM MODEL 

The physics-based model of the HVAC installed in the 

passenger vehicle is separated into cooling subsystems, 

heating subsystems, ventilation subsystems, and vehicle 

thermal networking systems. The temperature and the 

concentration of CO2 are managed by two ventilation 

subsystems, two cooling subsystems, and two heating 

subsystems. Table 1 contains the set of sensors used in the 

real system; these sensors are labelled “real” in Table 1. 

 A. Fault modelling 

The FMs of the HVAC are detected by the sensors 

listed in Table 1. The model includes fault models for 

temperature, pressure, and CO2 sensors. The sensors’ drift 

fault is modelled by introducing an offset in the sensor 

model; the offset is controlled by a model variable able to 

indicate no sensor fault and faults at different stages of 

degradation. A fault in components is modelled by varying 

their nominal conditions. Before doing this, however, it is 

crucial to evaluate FMEA; this allows us to analyse the FM 

to be modelled, including its effects and causes. The 

physics-based model has defined virtual sensors used to 

improve the detectability of FMs. The problem is that the 

real sensors detect FMs which have the same effects but 

result from different causes. Hence, the virtual sensors 

defined for fault detection must be related to a particular 

FM and to the signals that can be fed into the model once 

the HyM is implemented. Table 1 contains the virtual 

sensors defined in the physics-based model; these sensors 

are labelled “virtual”. 

 IV. DATA PREPARATION FOR FEATURE 

EXTRACTION 

 A. Physics-based model preparation 

The physics-based model requires a set of inputs to 

generate synthetic data, such as atmospheric temperature, 

number of passengers in the vehicle, control of the heating 

and air conditioning subsystems, and position of the fresh 

air damper. These inputs directly affect the response of the 

model. The physics-based model is also configured with 

variables that control the presence and severity of different 

fault types. This allows the models to be trained using 

healthy and faulty data. 

 B. Synthetic data Generation 

The algorithm developed for generating synthetic data 

has several different sections. 

The first section creates arrays of simulation input 

objects to define different simulation scenarios. The arrays 

can be classified into two groups. The first is an array 

containing a variable that indicates a degradation in a 

component. Thus, some arrays are variables of degradation 

indicating the presence and severity of faults. The second 

set of arrays contains controlled noise introduced into 

physical variables related to inputs. The physics-based 

model simulates the same response as the real system with 

the same inputs. The noise related to a physical variable is 

controlled by analysing the range of values the input can 

achieve. 

The second section of the algorithm selects random 

values of noise and degradation. A new array is created by 

combining the random values selected with the related 

model parameter. 

The third section runs the simulations with the array 

created in the previous section. Hence, this section 

contains the functions that configure the simulation, 

generate data, and save the data into a document. This 

paper uses data from the sensors listed in Table 1. 

 C. Ensemble data 

The fourth section of the algorithm reads the 

documents saved in the previous section and creates a 

dataset which contains in columns the parameters listed in 

Table 1 and in rows the results listed by simulation. The 

final column contains the fault code. 

Table 1. List of parameters for feature extraction. 

 Type 

Temperature after compressor 1 – 

virtual 
Signal 

Temperature after compressor 2 – 

virtual 
Signal 

Temperature before compressor 1 – 

virtual 
Signal 

Temperature before compressor 2 – 

virtual 
Signal 

Pressure after compressor 1 – real Signal 

Pressure after compressor 2 – real Signal 

Pressure before compressor 1 – real Signal 

Pressure before compressor 2 – real Signal 

Pressure after filter – virtual Signal 

Pressure before filter – virtual Signal 

Real heat transfer – virtual Signal 

CO2 level – real Signal 

Vehicle temperature – real Signal 

Impulsion temperature – real Signal 

Fault code 
Condition 

Variable 

Data are generated to train three data-driven models. 

One data-driven model is trained by data generated with 

five different faults: dust mass in filters 1 and 2, faults in 

evaporator fans 1 and 2, and CO2 sensor faults. These 

components can have different levels of degradation and 

can appear combined or individually. Another data-driven 

model is trained to detect a fault of the CO2 sensor. A third 

data-driven model is trained to identify different levels of 

dust mass fed into filters 1 and 2. 
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 V. FEATURE EXTRACTION AND CLASSIFICATION 

Features are extracted from the dataset structured in the 

previous section using the diagnostic feature designer 

toolbox of MATLAB R2019b. 

 A. Feature extraction 

The diagnostic feature designer toolbox allows the 

extraction of the following statistical features from the 

dataset containing the signals listed in Table 1. 

Mean: 

𝜇 =
Δ𝑡

𝑡1−𝑡0
∑ 𝑥(𝑡)𝑡1
𝑡=𝑡0

  (1) 

Standard deviation (second order moment): 

𝜎 = √
Δ𝑡

𝑡1−𝑡0
∑ [𝑥(𝑡) − 𝜇]2𝑡1
𝑡=𝑡0

 (2) 

Root mean square (RMS): 

𝑅𝑀𝑆 = √
Δ𝑡

𝑡1−𝑡0
∑ [𝑥(𝑡)]2𝑡1
𝑡=𝑡0

 (3) 

Shape factor 

𝑆𝐹 =
𝑅𝑀𝑆

Δ𝑡

𝑡1−𝑡0
∑ |𝑥(𝑡)|𝑡1
𝑡=𝑡0

  (4) 

Skewness (third order moment) 

𝛾 =

Δ𝑡

𝑡1−𝑡0
∑ [𝑥(𝑡)−𝜇]3𝑡1
𝑡=𝑡0

𝜎3
  (5) 

Kurtosis (fourth order moment) 

κ =

Δ𝑡

𝑡1−𝑡0
∑ [𝑥(𝑡)−𝜇]4𝑡1
𝑡=𝑡0

𝜎4
  (6) 

Peak value 

𝑥𝑝𝑒𝑎𝑘 = max |𝑥(𝑡)|  (7) 

Crest factor 

𝐶𝐹 =
𝑥𝑝𝑒𝑎𝑘

𝑅𝑀𝑆
  (8) 

 B. Feature classification 

Once the features are extracted and classified, it is 

necessary to find the features that best distinguish the 

various faults. A rigorous features comparison is 

developed using raking algorithms, i.e., one-way ANOVA 

and Kruskal-Wallis. The former creates the features 

ranking by one-way analysis of variance, while the latter 

ranks features using the chi-square statistic of a Kruskal-

Wallis test. 

The scores obtained from the ranking algorithms are 

similar but not identical. Standard deviation, peak value, 

and RMS of the real heat transfer signal and shape factor 

and crest factor of the CO2 level signal are the five features 

with the best scores obtained using the one-way ANOVA 

algorithm. This indicates these features are better able to 

distinguish between FMs in the data-driven model trained 

to detect multiple faults. 

The five features best able to detect a fault in the CO2 

sensor are the mean, RMS, and peak value of the CO2 level 

signal, and the shape factor of the impulsion temperature. 

The five key features for detecting the dust mass fed into 

the filters are the peak value of the real heat transfer signal, 

the shape factor of the pressure after filter signal, and the 

mean, RMS, and peak value of the CO2 level signal. 

 C. Training and validation of the data-driven model 

The rankings of features obtained from the two 

algorithms are quite similar. Thus, there is no relevant 

difference between features. The features with a score 

higher than one in the ranking generated by one-way 

ANOVA algorithm are exported to the classification 

learner tool in the three cases defined. 

The classification learner toolbox is used to train 

models, explore data, select features, specify validation 

schemes, and evaluate results. 

The exported data are used to train the following 

classifiers: decision trees (DTs), discriminant analysis, 

support vector machines (SVMs), logistic regression, k-

nearest neighbours (k-NNs), Naïve Bayes (NB), and 

ensemble classification. The models avoid overfitting by 

applying cross-validation with five folds. These 

specifications are loaded to train and validate the three 

models: 

(1) Using the data containing features extracted from 

five failure modes, the fine tree classifier obtains the 

highest accuracy. However, when the DT classifier is 

optimised, it reaches an accuracy of 41.1%, making the 

model unacceptable. 

(2) The classifiers trained to detect a fault in the CO2 

sensor reach a remarkable accuracy. The classifiers with 

an accuracy higher than 94% are optimised. SVM 

classifiers obtain an accuracy of 100% after the 

optimisation. The DTs and NB are optimised as well, and 

both reach an accuracy of 98.7%. The classifier subspace 

KNN obtains an accuracy of 100%. 

(3) The classifiers trained to detect the air filter in a 

faulty state also show high accuracy. SVM, ensemble, and 

k-NN are the classifiers optimised, obtaining 95.5%, 

95.0%, and 95.0% accuracy, respectively. 

 D. Testing the data-driven models 

The training is developed for the models with an 

acceptable accuracy after validation, models (2) and (3). 

The aforementioned classifiers for models (2) and (3) are 

tested using the same simulations. In this fashion, their 

confusion matrices can be directly compared, indicating 

the best model. Two hundred and fifty simulations are used 

to train, validate, and test each model. Thus, 250 

simulations contain data when the CO2 sensor is in healthy 

and faulty states. Another 250 simulations contain the 

presence of dust in the filters. Two hundred (80%) of each 

set of simulations are used to train and validate the models; 

the other 50 (20%) are used to test the models. Another 

640 simulations are used to train and validate model (1), 

simulating five different faults of the system. This model 

is not tested because the results of validation do not 

warrant its use. 
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 VI. RESULTS AND DISCUSSION 

The paper develops models using both measured and 

synthetic data. The measured data are taken from an 

HVAC system in healthy condition. The synthetic data 

contain both healthy and faulty data. All synthetic data are 

generated by simulating noise in some inputs of the 

physics-based model. 

 A. First case: multiple fault detection 

The multiple fault detection model is trained and 

validated with data labelled with the faults listed in Table 

1. The proposed model uses five different faults and the 

healthy state of the system. These faults are dust mass in 

filters 1 and 2, faults in evaporator fans 1 and 2, and CO2 

sensor faults. 

Six hundred and forty fingerprints are used to train and 

validate this model; 41.1% is the best accuracy obtained 

after validation. This accuracy is unacceptable; for this 

reason, the testing of this model is not presented in the 

paper. 

Nevertheless, three of the five faults are modelled, 

analysed, and presented here. The analysis shows the 

signals best able to distinguish between FMs match for the 

three faults analysed. This, together with the definition of 

degradation of components from early stages, makes it 

difficult to distinguish between FMs using the same 

model. 

 B. Second case: CO2 sensor degradation 

Table 2 contains the results obtained after training, 

validating, and testing the model for CO2 sensor faults. The 

classifiers with best accuracy after validation are listed in 

Table 2. The table also contains the data of the confusion 

matrix obtained after testing the classifiers. 

The DT classifier achieves 61.9% true positives (TP), 

100% true negatives (TN), 38.1% false negatives (FN) and 

0% false positives (FP). Subspace k-NN and SVM 

properly classify 100% of the data used for testing, as 

shown in Table 2. 

Table 2. Results of the data-driven model for detection of a fault 

in the CO2 sensor. 

 
Accuracy 

Testing 

 TP TN FP FN 

SVM 100% 100% 100% 0% 0% 

DT 98.7% 62% 100% 0% 38% 

NB 98.7% 0% 100% 0% 100% 

k-NN 100% 100% 100% 0% 0% 

 C. Third case: Detection of dust in the filter 

In the third case, the classifiers with the best accuracy 

after validation are listed in Table 3. The table shows the 

accuracy obtained after validation and the confusion 

matrix obtained after testing. 

All the classifiers selected can correctly classify the 

fault, as shown in Table 3. Nevertheless, only SVM 

properly classifies one of the other FMs: 98% true 

negatives, and 2% false positives. 

Table 3. Results of data-driven model for detection of dust in air 

filter. 

 
Accuracy 

Testing 

 TP TN FP FN 

DT 100% 100% 100% 0% 0% 

NB 96.5% 100% 100% 0% 0% 

SVM 99.5% 100% 100% 0% 0% 

Ensemble 100% 100% 100% 0% 0% 

k-NN 99.0% 100% 100% 0% 0% 

 VII. CONCLUSIONS AND OUTLOOK 

The paper proposes an HyM for an HVAC system 

located in a passenger vehicle of a train. A physics-based 

model is used to generate data by simulating different 

levels of degradation in some components of the HVAC. 

These data are used to train, validate, and test various basic 

data-driven methods for fault detection in the HVAC 

system. The data-driven methods trained for comparative 

purposes are DTs, discriminant analysis, SVM, logistic 

regression, k-NN, NB, and ensemble classification. The 

comparison is performed in three data-driven models: 

(1) The physics-based model generates data by 

combining five different fault types: the presence of dust 

in the filters, faults in evaporator fans 1 and 2, and CO2 

sensor faults. The DT method achieves an accuracy of 

41.1%, which is the best result after the validation of all 

classifiers. This unacceptable result shows the main 

challenge in the future of failure detection and diagnostics 

(FDD) in HVAC systems is to find efficient and accurate 

methods for systems with degradation in multiple 

components at the same time. 

(2) Synthetic data related to a fault in the CO2 sensor 

are generated by the physics-based model. These data are 

used to train, validate, and test SVM, DT, NB, and 

subspace k-NN methods. SVM and subspace k-NN can 

correctly classify 100% of the fingerprint used in the 

testing process. 

(3) The last data-driven model is trained, validated, and 

tested using data taken from simulations where different 

amounts of dust mass are fed into filters 1 and 2. The 

virtual sensors, defined as real heat transfer and pressure 

after filter, provide key features to detect dust in the filter. 

DT, NB, SVM, and ensemble k-NN do not reach 100% 

accuracy after validation, but all are able to correctly 

classify 100% of the fingerprints used during the testing 

process. 

The difficulties found in the fault diagnosis of multiple 

fault problems in the HVAC system suggest the need to 

develop a more efficient and accurate diagnostic method. 

Furthermore, when the FMs are individually analysed, the 

features that strongly define them are found to match. This, 

together with the shortage of sensors in the system, calls 
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for the development of new virtual sensors able to give a 

physical understanding of the defined faults. Once 

multiple faults can be accurately detected, RUL estimation 

will be possible using prognostics. This will extend the 

useful life, reduce the life cycle cost, and improve the 

reliability and availability of the HVAC system. 

 VIII. ACKNOWLEDGMENTS 

This project was supported by the Basque Government 

through ELKARTEK (ref. KK-2020/00049) funding 

grant. 

 

REFERENCES 

 

[1]  M. Mishra, U. Leturiondo-Zubizarreta, Ó. Salgado-

Picón e D. Galar-Pascual, «Hybrid Modelling for failure 

diagnosis and prognosis in the transport sector. Acquired 

data and synthetic data,» DYNA Ingeniera e industria , 

vol. 90, n. 2, pp. 139-145, 2014.  

[2]  D. Galar e U. Kumar, eMaintenance: Essential 

Electronic Tools for Efficiency, Academic Press, 2017.  

[3]  L. Liao e F. Köttig, «Review of Hybrid Prognostics 

Approaches for Remaining Useful Life Prediction of 

Engineered Systems, and an Application to Battery Life 

Prediction,» IEEE Transactions on reliability, pp. 191-

207, 2014.  

[4]  D. An, N. H. Kim e J.-H. Choi, «Practical options for 

selecting data-driven or physics-based prognostics 

algorithms with reviews,» 

ReliabilityEngineeringandSystemSafety, vol. 133, pp. 

223-236, 2015.  

[5]  K. Choi, S. M. Namburu, M. S. Azam, J. Luo, K. R. 

Pattipati e A. Patterson-Hine, «Fault Diagnosis in 

HVAC Chillers,» IEEE Instrumentation and 

measurement , pp. 24-32, 2005.  

[6]  S. Madhavi Namburu, M. S. Azam, J. Luo, K. Choi e 

K. Pattipati, «Data-Driven Modeling, Fault Diagnosis 

and Optimal Sensor Selection for HVAC Chillers,» IEEE 

Transactions on Automation Science and Engineering, 

vol. 4, n. 3, pp. 469-473, 2007.  

[7]  A. Montazeri e S. Mohamad Kargar, «Fault detection 

and diagnosis in air handling using data-driven methods,» 

Journal of Building Egeneering, vol. 31, n. 101388, 2020.  

[8]  Z. Zhou , G. Li, J. Wang, H. Chen, H. Zhong e Z. Cao, 

«A comparison study of basic data-driven fault diagnosis 

methods for variable refrigerant flow system,» Energy & 

Buildings, vol. 224, n. 110232, 2020.  

[9]  L. Liao e F. Köttig, «A hybrid framework combining 

data-driven and model-basedmethods for system 

remaining useful life prediction,» Applied Soft 

Computing, vol. 44, pp. 191-199, 2016.  

[10]  S. Bendapudi, J. E. Braun e E. A. Groll, «A Dinamic 

Model Of A Vapor Compression Liquid Chiller,» in 

International Refrigeration and Air Conditioning, West 

Lafayette, USA, 2002.  

[11]  J. Poon, P. Jain, I. C. Konstantakopoulos, C. Spanos, 

S. Kumar Panda e S. R. Sanders, «Model-Based Fault 

Detection and Identification for Switching Power 

Converters,» IEEE Transactions on Power Electronics, 

vol. 32, n. 2, pp. 1419-1430, 2017.  

[12]  S. Yul Chu e A.-T. Avestruz, «Electromagnetic Model-

Based Foreign Object Detection for Wireless Power 

Transfer,» in 2019 20th Workshop on Control and 

Modeling for Power Electronics (COMPEL), Toronto, 

Canada, 2019.  

[13]  K. Tidriri, T. Tiplica, N. Chatti e S. Verron, «A New 

Hybrid Approach for Fault Detection and Diagnosis,» in 

20th International Federation of Automatic Control, 

IFAC, Toulose, France, 2017.  

[14]  S. Frank, M. Heaney, X. Jin, J. Robertson, H. Cheung, 

R. Elmore e G. P. Henze, «Hybrid Model-Based and 

Data-Driven Fault Detection and Diagnostics for 

Commercial Buildings,» in 2016 ACEEE Summer Study 

on Energy Efficiency in Buildings, Pacific Grove, 

California, 2016.  

[15]  M. Raihan Mallick e S. A. Imtiaz, «A Hybrid Method 

for Process Fault Detection and Diagnosis,» IFAC 

Proceedings Volumes, vol. 46, n. 32, pp. 827-832, 2013.  

[16]  V. Bhanot, D. Bacellar, J. Ling, A. Alabdulkarem e V. 

Aute, «Steady state and transient validation of heat 

pumps using alternative lower-GWP refrigerants,» West 

Lafayette, Indiana, USA, 2014.  

[17]  H. Hassanpour, P. Mhaskar, J. M. House e T. I. 

Salsbury, «A hybrid modeling approach integrating first-

principles knowledge with statistical methods for fault 

detection in HVAC systems,» Computers & Chemical 

Engineering, p. DOI: 107022, 2020.  

[18]  T. Aven, «On the meaning of a black swan in a risk 

context,» Safety Science, vol. 57, pp. 44-51, 2013.  

[19]  Á. M. Hernández Mejías e D. Galar, Techniques of 

Prognostics for Condition-Based Maintenance in 

Different Types of Assets, 1 a cura di, Luleå: Luleå 

University of Technology, Graphic Production 2014, 

2014.  

 

 

84Editors: Dr. Zsolt János Viharos; Prof. Lorenzo Ciani; Prof. Piotr Bilski  &  Mladen Jakovcic


