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I. INTRODUCTION

In the recent years, condition monitoring (CM) has
become available and cost effective for large sets of
products; this allowed development of data-driven
algorithms which are able to predict the health condition
(HC) and the Remaining Useful Life (RUL) of a product.
Data-driven algorithms are based on the collected run-to-
failure times and do not deal with failure mechanisms,
which makes them suitable for analysing systems with

complex physical relations between the components.
RUL of an item or a system, at a given time instant is
defined as the remaining time interval in which it is able
to fulfil its required function. Predicting the future
behaviour of the product (in terms of HC and RUL) based
on the ability to learn from its past history and from the
past behaviour of similar products is an essential
objective when aiming to reduce maintenance costs and
increase the system availability [1].

No health condition is defined as “the extent of
degradation or deviation from an expected normal
behaviour” [2]. In the case of CB, HC refers to a
component profile based on specific parameters which
are monitored: degradation of the switching contacts,
leakage of the interrupting chamber, SF6 gas density,
temperature of the interrupting chamber, etc.

Relevant scientific papers have been dealing with
different aspects of the RUL estimation and maintenance
decision making for critical components of the system.
Using the fleet concept, in [3] simulation models are
presented for maximizing the fleet reliability compared to
the target reliability in order to optimize maintenance
activities. The importance of fleet size is discussed in [4]:
the paper deals with large scale problems reducing them
to single items and calculating their reliability
individually. An essential need for uncertainty analysis
when estimating the RUL is described in [5]. Previous
versions of the first algorithm developed in our paper are
presented in [6]: the condition monitoring data of a fleet
of a product is analysed by statistical methods to extract
the usage and degradation profile of the product. This
profile is then represented by statistical distributions used
later to predict the behaviour of the component.

This paper is structured as follows: in Section 2 a
methodology for identifying a suitable sub-fleet is briefly
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Abstract – Predicting the future behaviour of an item
or a complex system based on its past history is the
aim of data-driven algorithms. In our paper, we
present two algorithms for predicting the Remaining
Useful Life (RUL) of industrial circuit breakers (CB)
which make use of on-site collected data related to
CB’s health condition. In the first algorithm, a sub-
fleet of CBs is identified by applying the two-sample
Kolmogorov-Smirnov Test which relies on statistical
similarity between the observations. Once chosen the
sub-fleet, the algorithm attempts to exploit
correlations between the variation of health condition
and sampling time using copulas. The second
algorithm models the correlation structure between
the time at which a certain degradation level occurs
and the item’s End of Life (EOL). Both algorithms are
used to estimate the item’s Remaining Useful Life
through the Monte Carlo method. The use of copulas
attempts to exploit also the information on the
correlation structure in the data in order to obtain a
higher accuracy in the estimation.
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described. In Section 3 two algorithms for RUL
prediction are explained and illustrated on an industrial
CBs dataset. Finally, in Section 4 the results are reported
and analysed.

II. BASIC CONSIDERATIONS

As proposed in the relevant literature [1], a subset
(i.e., sub-fleet) is selected among a given set of products
(fleet) that show higher similarity in terms of observed
degradation in time, with respect to the item whose RUL
estimation is required. The sub-fleet identification is
based on a statistical test for grouping those products
which present a statistical distribution of their
degradation rate similar to the target product. The two-
sample Kolmogorov-Smirnov Test (KST) is used in order
to decide whether the two samples are drawn from the
same continuous statistical distribution or not, i.e., if they
belong to the same sub-fleet [1]. The KST uses the
maximum absolute difference between the distribution
functions of the samples. In general, the test makes use of
each individual data point in the samples, independently
of their direction and ordering [7]. The confidence level α
determines the selectivity of the test.

The information about the past usage of the product is
reported as a time series of HC from the initial value of
100% up to 0%. The sampling time and variation of the
HC can be calculated as the difference between two
subsequent points of the monitored values. Degradation
rate is the ratio between the HC variation and sampling
time, for i=1, 2,…, n, where n is the number of monitored
values [8]. These definitions can be initially used for each
CB in the fleet and then combined to obtain vector
representations for the whole fleet.
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The correlation structure between sampling time and
health condition variation is determined by estimating the
underlying copula. A copula is a function which joins (or
couples) multivariate distribution functions to their one-
dimensional marginal distribution functions, i.e., contains
information about the correlation structure between
random variables and, in general, can also capture
nonlinear relationships [9]. Mathematically speaking, let
us assume that Fx and Fy are the cumulative distribution
functions of the random variables X and Y. Their joint
distribution can be written as [10]:
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where F-1
x(u) = x, F-1

y(v) = y and u and v belong to the
unit square. In eq. (4), Fx(x) and Fy(y) are the marginal
distribution functions of random variables X and Y and
C(·) denotes the copula function. The interesting aspect
about copulas is that they allow to model separately the
marginal distributions and the correlation structure.

III. DESCRIPTION OF THE METHOD

In this paper two algorithms are proposed in order to
predict the RUL: the first one is based on KST for sub-
fleet identification and copula correlation modelling in
order to predict the HC vs time curve, while the second
one completely relies on copula modelling in order to
estimate the RUL. For both algorithms, the accuracy of
the prediction is calculated as the ratio between the sum
of correct predictions over the total number of CBs tested
as proposed in [1].

A. Algorithm 1
Once chosen the sub-fleet (for which we have a

complete or partial HC profile), the prognostic algorithm
1 consists of two main phases:

A). Knowledge extraction from the condition
monitoring data of the product as described in section 2:
past usage information is extracted by taking for each
product the distribution of the sampling time and the
distribution of the health condition variation in the related
condition monitoring data.

B). Knowledge exploitation: prediction of the future
HC profile over time and extracting a confidence interval
for the test product RUL. This is done through the steps
shown in Fig. 1 (left), assuming that the correlation
structure between the random samples of ΔHC and Δt is
captured by the copula. The product is not able to fulfil
its required function for HC = 0, when it reaches its
estimated End of Life (EOF). The algorithm is run for
every item in the reference fleet, repeating it a
significantly large number of times so that Monte Carlo
method can be applied to obtain a 5% confidence interval
for the RUL.

Maximum Likelihood Estimation (MLE) is utilized to
set the parameters of the copula which fits best the data
[11]. In the baseline scenario the independence copula is
considered, and the same results are obtained as in the
relevant papers [1]. Then other copulas types are used
and based on the log-likelihood values, the most suitable
one is selected. The final aim is to observe RUL
variations obtained by taking into account the dependence
between sample time and health condition variation.

The algorithm performance is estimated for a given
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observed degradation level (the % of collected data for
the test product with respect to its actual lifetime) and
different values of α (which defines the desired level of
selectivity of the KST) [1].

B. Algorithm 2
Another approach to solve the same problem is

proposed in the following section. A set of CM data
related to N=90 products is considered again. By
inspecting the data, a significant pairwise correlation is
found between ti when i = 25, 50, 75 (ti is the time needed
for the product to reach a degradation level equal to i
expressed in % [12]) and tf (the EOL). For instance, the
time needed to reach HC=100-25=75% appears to be
significantly correlated with the time needed to reach the
EOL. This is shown in the scatter plots in Fig. 2 where
the correlation is calculated using Spearman’s rho (a non-
parametric measure of correlation between variables
[13]).

Fig. 1. Flowcharts of algorithm 1 (left) and algorithm 2 (right)

Since from Fig. 2 it becomes clear that some kind of
relationship exists, the aim is to predict the RUL (defined
as the difference tf – ti) of a specific CB at a given ti, by
using the information of all the other CBs in the dataset.
The algorithm 2 consists of the steps shown in Fig. 1
(right) and it runs for all the N CBs in the dataset.

Fig. 2. Pairwise comparison between ti and tf

IV. RESULTS AND DISCUSSIONS

In the baseline scenario a naturally assumed
correlation is discussed between the sampling time and
the variation of health condition. A reasonable
expectation is the longer the sampling time, the higher the
variation of HC. Since this case is not taken into account
in the previous similar work [1], at first it is examined
through the analysis of correlation between the sampling
time and HC variation from the available dataset. The
data, however, indicates that there is almost no
correlation pattern between these two variables both
when considering a single item (Fig. 3 left), and when
considering the entire fleet (Fig. 3 right): indeed the
Spearman’s rho for the entire fleet is ρ= - 0.025, which
indicates that almost no correlation exists. However, at
1% significance level, a bivariate asymptotic
independence test based on Kendall’s τ (which counts the
number of different pairs between two ordered sets and
gives the symmetric difference distance [14]) still
suggests some possible dependence. Based on the log-
likelihood values, a 180° rotated Clayton [10] copula has
been selected for modelling the correlation structure.

As it is shown in Fig. 4, some level of correlation and
highly visible asymmetry in the upper part exist between
the degradation rate and the sampling time.

Fig. 3. Pseudo observations of sampling time (u) vs. HC
variation (v) for a CB (left) and for the entire fleet (right)
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Fig. 4. Pseudo observations of
sampling time (u) vs.

degradation rate (v) for the
fleet

Fig. 5. Pseudo observations
of sampling time (u) vs. HC
variation (v) for the fleet:

red-simulated observations,
blue-real observations

The degradation rate and its relationship with the
sampling time are considered to be inherent in the model,
since they are mathematically linked through Eq. 3.
However, the correlation between them is taken into
account in a second implementation of algorithm 1 by
sampling d (instead of ΔHC) and Δt from a fitted copula
(a 180o rotated Tawn [14]): the results are shown in Fig. 5
(in red the simulated data, while in red the observed one)
and the algorithm performance is estimated for different
levels of α. In both the implementations of algorithm 1
very similar results have been obtained so only the results
of the first one are reported in Fig. 6. As it can be seen,
the alpha value does not seem to have a notable impact
while a significant accuracy (>90%) is reached for
observed degradation greater than 50%.

Fig. 6. Algorithm 1 performance Nf= 81

For what it concerns the second algorithm, depending
on the (ti, tf) pair, Frank and Gaussian copulas [9] are
used in the analysis. Independence test at 5% significance
level is done prior to fitting each copula through MLE.
As it can be seen in Fig. 7, algorithm 2 shows a very high
accuracy (>90%) even at low observed degradation level
(20%).

A significant advantage of algorithm 1 is the fact that
it can be applied to products for which the entire HC time
series is not available. On the other hand, algorithm 2
shows higher accuracy even for very low observed
degradation levels but requires the complete HC time
series for at least some of the products.

Fig. 7. Algorithm 2 performance N = 90

Another point of comparison between the two models
can be the width of their confidence interval (CI). In Fig.
8 and 9 are plotted the CIs of prediction as a percentage
of the true RUL value for each algorithm respectively.

Fig. 8. Actual RUL in case of algorithm 1

Fig. 9. Actual RUL in case of algorithm 2

The following observations can be made for the first
algorithm:
 Regardless of the selectivity value α, the same trend

for the confidence intervals is observed;
 As the degradation level increases, the confidence

intervals (as a percentage of the actual RUL)
increase as well. The overall increase is about 20%
(10% on both sides of the CI). This can be explained
by the fact that the values to be predicted become
smaller and therefore the error weighs more.
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For algorithm 2 instead, it can be noted that:
 The confidence intervals do not vary significantly

with the observed degradation level;
 The uncertainty on the prediction is, however, larger

if compared with the confidence intervals of
algorithm 1.

As far as computational complexity is concerned,
generally speaking the two algorithms do not pose any
particular problems, at least when dealing with limited
data such as in this case. Indeed, the most demanding
operation is the fitting of the copula. However, this
operation is done only once, given the information
available on the CBs and then it is updated only when
new information become available. To predict the CI of
the RUL for a CB, algorithm 2 requires extracting N
samples only, while algorithm 1 requires repeating N
times the simulation of the entire life of the CB. This
means that if the life of a CB is described by m samples,
then algorithm 1 needs to sample m∙N samples, i.e. it
needs m times the number of samples of algorithm 2 to
achieve the same purpose.

Overall, a possibility for combined usage of both
algorithms seems to exist: algorithm 1 could be used on
new products for which historical data is limited by
exploiting the fleet and sub-fleet concepts. Algorithm 2
instead can be used as soon as some historical data is
collected. Another possible use would be to combine
these algorithms through ensemble learning [16] or
choose which algorithm to use based on the observed
degradation level.

V. CONCLUSIONS AND OUTLOOK

The novelty in the proposed models is the attempt to
exploit all the information enclosed in the product HC
profile by including the correlation structure in the
models. Taking into account the entire HC profiles
instead of RUL values only, the models obtain more
detailed information, such as Probability of Failure within
a predetermined time interval. Considering the
appropriate dependences by using the copula approach
allows for further exploiting the information contained in
the data and improving the performances of the
prediction algorithms, particularly evident in the second
algorithm. In case of algorithm 1, another advantage is
that the sub-fleet is not strictly required to include only
products with a known RUL, but also products
characterized by a partial HC profile knowledge. A
further usage could be explored by combining both the
algorithms depending on the data available.
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