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Abstract: Nano coordinate measuring machines (NCMMs) 
are technological devices enabling the positioning, touching 
and measuring of centimetre-sized objects with nanometre 
precision. When using such measuring machines the speci-
fication of measurement results requires the expression of 
uncertainty of measurement.  
This paper describes a concept for the expression of three- 
dimensional uncertainty of NCMMs based on a vectorial 
metrological model. By means of a modular model ap-
proach submodels can be easily included in the metrological 
main model. Furthermore, cross-coupling effects arising 
between the measuring axes can be taken into account. The 
described model provides a basis for the expression of un-
certainty according to the Guide to the Expression of Uncer-
tainty in Measurement (GUM) or by means of the Monte-
Carlo-Method. The results of the uncertainty analysis are 
shown for a special example of a vectorial model. 
  
Keywords: Nanometrology, uncertainty of nano coordinate 
measuring machines, vectorial metrological model. 

1.   INTRODUCTION 

Nano coordinate measuring machines are high-precision 
three-dimensional measuring systems with a resolution of 
less than 0.1 nm over entire ranges of 25 mm x 25 mm x5 
mm and larger. Figure 1 shows such a device. 

Those high-tech instruments consisting of precision 3D-
guides, interferometers, a 3D-reference mirror and nano-
probes, connected by a stable frame are the subject of re-
search in nanometrology [1],[2],[3]. Their metrological 
accuracy can be shown by uncertainty estimation [4]. Most 
of the hitherto described uncertainty budgets for such ma-
chines were focused on the measurement of one-
dimensional objects, such as step-height standards or pitch 
standards. For the validation of two- or three-dimensional 
measurements a three-dimensional uncertainty budget is 
necessary. This means that such a measurement is a result 
of two ore more touches by means of a nanoprobe. The 
uncertainty budget has to consider the errors of all touches. 
Furthermore, the correlation of the errors of the touches is 
to be taken into account. An error- or uncertainty budget of 
a three-dimensional measurement requires a three-
dimensional metrological model of the nano coordinate 

measuring machine. The paper presents the new approach 
of such a model in vectorial form. 

 

 

Fig. 1: Nano coordinate measuring machine (SIOS 
Company) 

 
 

2.   VECTORIAL METROLOGICAL MODEL 

For measuring the distance between two positions, A 
and B on an object, it is necessary to touch the object twice 
in point A and in point B (Fig. 2). In the present case, the 
object to be measured is firmly attached to the mirror, with 
the laser beam of the interferometer virtually pointing to the 
tip of the probe. This measurement method is a precondition 
to avoiding Abbe errors. For each measuring point, a closed 
metrological chain exists: 

 0=−+ FRaIaAa xxx           (1) 

0=−+ FRbIbBb xxx           (2) 

with  xAa   -   coordinate of point A at time a 
  xBb   -   coordinate of point B at time b 

xI    -  distance from the mirror surface to the inter-
ferometer centre 

  xFR   -  length of the metrological frame 
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The distance between the two points A and B can be calcu-
lated by the difference of the chains (1) and (2):  

FRbFRaIbIaAaBbM xxxxxxx +−−=−=    (3) 

 
The difference xIa – xIb represents the interferometrically 
measured displacement of the object including the mirror. If 
the frame does not change its length between the two probe 
touches, its value has no influence on the measuring result. 
However, in reality the frame is not invariant.  
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Fig. 2: Metrological chains for two measuring points 

If we consider the NCMM, the characterization of the met-
rological chains for the three measuring axes requires a 
vectorial model as shown in Fig. 3. In the same ways as 
illustrated in Fig. 2, two vector chains can be created for 
touching point A and B. 

The connected vectors in each vector chain represent 
metrological submodels (e.g. the probe model, the frame 
model, the interferometer model, the 3D-reference mirror 
model, the Abbe-error model, etc.). 

The main vectorial model is created by the difference of 
the two vector chains: 
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The distance vector between points A and B at time b re-
sults from the following equation:  

abAaBbM rrrr
rrrr −−=           (5) 

The vector abr
r

 considers the possible shift of the distance 

vector between time a and time b. 
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Fig. 3: Metrological vectorial chains 

The benefit of the vectorial consideration is the modu-
larity and the possibility of easily expanding the model. 
Furthermore, cross-coupling effects arising between sepa-
rate coordinates can also be effectively included in the un-
certainty budget. 

3. SUBMODELS 

Abbe error submodel 
The vectorial Abbe error submodel can be described by 

the Cartesian product of the tilt angle error vector of the 
guides, and the misalignment vector considering the probe 
tip is not exactly placed in the virtual point of intersection 
of the three laser beams: 

mistAbbe rr
rrr ×= ϕ                                              (6) 

This error vector is an example for cross coupling between 
the coordinates. 
  
Cosine  error submodel 

The cosine error vector includes the geometrical cosine 
error of misalignment occurring in the case of angle tilting 
of the guides and the wave front error at the diaphragm of 
the interferometer: 
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   (7) 
 
 
 
 
In Eq. (7), the index PD of x, y, z denotes the distance be-
tween the probe tip and the diaphragm of the interferometer, 
the index MD denotes the distance between the mirror and 
the diaphragm, and φ describes the tilt of the guides. 
 
Mirror error submodel 
The 3D-mirror of the NCMM does not have ideal surfaces. 
Its topography can be measured by means of a phase shift 
interferometer. The data set obtained is associated with 
measurement uncertainty. 
Figure 4 shows the consideration of mirror errors. 
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Fig. 4: Mirror error 

 

In the NCMM a mirror error vector MIer
r

 is assigned to each 

point of the measuring space. 
 
Frame model 
The frame of an NCMM is the carrier and the fixed connec-
tion of the interferometer and the probe. It consists of sev-
eral parts made of various materials. Needless to say that 
the goal is to realise a stable frame without any length shift 
due to environmental, aging or other effects. However, in 
reality especially temperature influences affect the NCMM. 
The length shift of the frame parts can be described by the 
following terms: 

       (8) 
 

                (9) 
 
 
Interferometer model 
The translational displacement of the object and the mirror 
while touching point A and B is measured by means of 
three interferometers. The interferometer measures the dif-
ference between its measurement path and its reference 
path. In Fig. 5, the measurement path is the distance be-
tween the reflecting surface of the mirror and the interfer-

ometer centre point ICP. The reference path is formed by 
the distance between the interferometer centre point and the 
interferometer reference point IRP situated on the surface of 
the reference mirror. 
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Fig. 5: Interferometer model 

The interferometer output xIm is given by: 

IRI xxx −=Im            (10) 

In the 3D-space equation (10) is represented by virtual vec-
tors: 

IRI rrr
rrr −=Im             (11) 

The interferometer output vectors themselves, arIm

r
 and  

brIm

r
, for the touch points A and B are formed by subvec-

tors embodying the laser wavelength, the index of refrac-
tion, the Edlen formula including environmental values, the 
counted ordinal number and the interpolation. 
Thus, all subvectors in the main vectorial model (4) are 
described. 
    

4. COORDINATE TRANSFORMATION 

The norm of the distance vector (5) between points A and B 
is calculated by: 
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Fig. 6: Coordinate systems 
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Equation (12) is valid only for an orthogonal coordinate 
system. In fact, due to angle errors of the 3D-mirror and 
adjustment errors of the interferometer beams, we have to 
deal with a non-orthogonal system (Fig.6). 

The angles zyx ϕϕϕ ,,  represent the deviations from or-

thogonality. This means we have to transform the non-
orthogonal coordinates into orthogonal ones: 
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               (14) 
Equations (13) and (14) represent the coordinate transfor-
mation model. The norm of the distance vector can now be 
calculated by: 
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       (15) 

 

5. CALCULATION OF MEASUREMENT UNCER-
TAINTY 

The combined uncertainty of the distance vector Mr
r

can be 

calculated according to the GUM 
 

               (16) 
with the correlation between the input values having to be 
considered. The differentiated model function in Eq. (16) is 
established by the combination of the model equations (4) 
to (11) and the coordinate transformation (13) and (14). The 
uncertainty of the norm of the distance vector is given by  
 
 
 
 
               (17). 
The uncertainties u(xM), u(yM) and u(zM) in Eq. (17) are 
derived from the uncertainty vector (16): 
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For an NCMM with a measuring range of 200 x 200 x 5 
mm3 and a distance vector directed from the centre to the 

coordinates {100; 100; 2,5} the uncertainty budget was 
simulated [5]. Under vacuum conditions an expanded uncer-
tainty (coverage factor 2) of less than 35 nm was achieved. 
In the case of the assumed small input uncertainty values 
the calculation by means of the Monte-Carlo-Method pro-
duced the same results. The uncertainty budget shows that 
especially the mirror errors including its deviation from 
orthogonality which is not exactly known exert a major 
influence on the 3D-uncertainty. 

6. CONCLUSION 

The presented method of estimating the uncertainty of 
nano coordinate measuring machines permits an effective 
way of analysing the metrological efficiency of such preci-
sion instruments. The advantage of the method is its modu-
larity for including submodels as well as the possibility of 
taking the coupling effects between the coordinates into 
account in an easy way. 

It was shown how a concrete 3D- measurement uncer-
tainty of a nano coordinate measuring machine can be cal-
culated. Based on the vectorial model, the calculation was 
accomplished according to the “Guide to the Expression of 
Uncertainty in Measurement” [4]. Another possibility is to 
calculate measurement uncertainty using the Monte Carlo 
method, which offers the advantage of taking nonlinearities 
in the metrological model into account.  
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