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Abstract: The paper is concerned with the application of limited number of training samples. The resultscamning
the Support Vector Machine to the discovering of th the recognition of single element faults in theigtégely

parametric fault in analog electrical circuits.
recognition of fault is based on the measuremehthe
accessible terminal voltage and current of theudirat the
set of frequencies. The SVM network fulfills thder@f the
recognizing system and of the classifier. The nucaér
results of recognition of faulty elements in the filier of

the ladder network structure are presented andisisd in

the paper

Keywords: SVM classifiers, parametric fault detection,

diagnosis of circuits.

1. INTRODUCTION

The terminated LC prototype ladder filter are presentadl

discussed. They confirm great efficiency of the eleped
diagnostic system.

2. PRINCIPLE OF FAULT RECOGNITION AND
LOCATION

In the recognition and localization of fault in &o@
electrical circuit it is assumed, that the genstalcture of
the circuit under investigation is known [8]. Theeuis able
to measure the external voltages and currentseo€itiauit,
operating in the normal and faulty conditions ie steady
state under sinusoidal excitation. We assume th#é &
element as the parametric change of its value albee

The paper presents the neural approach to thetietec assumed tolerance limit.

of the parametric fault and its location in anakigctrical
circuits on the basis of the external measuremehthe

The basic observation is that each state of thmuitir

voltages and currents. It is assumed that the gener €ither normal or any single fault, is associatedhvthe

structure of the circuit under investigation is Wwm The
fault of element is understood as the parametrangh of
its value beyond the assumed tolerance limit [1,281y
fault of one element at a time is considered. Téeation
of the faulty element is performed on the basistlof
measurements of the terminal signals, i.e., thenitel
voltages and currents of the circuit, operatinghie normal
and faulty conditions. The measured signals shoaottergo
the stage of preprocessing to extract the diagndestitures
of the obtained information. These features form ithput
signals to the neural network, performing the raike
classifier.

The neural network of the Support Vector Machine

(SVM) type is trained on the examples of the pater
belonging to the normal operation of the circuitd @ the
representatives of the typical faults of the paittc
element. The important advantage of the neural odeth
its ability to treat efficiently the parametric etges of the
values of the faulty elements. The method is effecand
offers a great speed and acceptable accuracy éofatiit
detection in the large range of parameter changies.

comparison to the standard neural networks, like th

multilayer perceptron or self-organizing Kohonerwark
[1,2,8] SVM offers much better generalization dbilat

specific frequency characteristics of the magnitudel
phase of the measured variables. These charaictedgfer
to some degree at various faults. The differenedsden
the nominal and faulty states are used by us toenth&
recognition of the particular state of the circtihis will be
done by the neural classifier network. The classifis
trained on the data representing different exampfethe
nominal and faulty states of the circuit. Afterimiag, the
parameters of the classifier are frozen and théesyss
ready for the on-line operation of the diagnosiikt

Let us assume that there is a sufficient number of

independent signal measurements in the circuitatgre
than the number of elements in the analog circdit o
known topology and nominal values of its elemeBt31].

The measurements are concerned with the external
These
frequencies should be chosen in a way to enhanee th

accessible points at different frequencies.
differences between different states of the circHiénce
special
applied. The important point is to provide the kgh
sensitivity of the system to any changes in thapeters
of the circuit element. Hence the natural way ttedaine
the optimal set of frequencies is the applicatidnthe

sensitivity analysis of the circuit [1]. The sensty

procedure of frequency selection should be



curves of the magnitude and phase of the externapreserves the most important elements of the aigin

measured variables with respect to the circuit el@sare
generated. The frequencies corresponding to theinaax
of the absolute values of these curves are theidated for
testing frequencies.

The next step is to convert the measured variahtes
the diagnostic features. They should be normalered at
the same time as sensitive as possible to the elsaofgthe
parameters of the elements. To differentiate tretufe
values corresponding to individual faults we coesillere
the relative differences between the faulty and-faaity
modes of the circuit operation. Applying the gehera
notation x for either measured voltag€ or currentl
(magnitude or phase) we define the feature asdlagive
difference of this variable at nominal and actual
(presumably faulty) state of the circuit at thegirencyf;,

x(f) = x,(f)

X (f)= x (1)

)

The variablex,(f) means the measured quantity under

non-faulty (nominal) operation of the circuit ateth
frequency f. The generated featuresg(f]) are the
candidates for the input vectrrdefining the input signals
for the classifier.

The next step is the validation and selection & th
candidate set of features.
measurements have been done for one voltage anehtur
of the circuit at the set of frequencies, for whithe
diagnostic features have been generated for thenitnde
and phase according to eq. (1). As a result wefgat
possible candidate vectord/, =abs(V,), V, =arg(V,),

l,=abs(l,) and I, 6=arg(,), where the vector of
voltages V, =|V,(f,).V.(f,)....V.(f,)] and
I :[Ir(fl),Ir(fz),...,lr(fmz)] represent relative voltages

and currents of the terminals at different frequend;,
normalized according to the relation (&hs stands for the

currents

Let us assume that the

information. The transformation matri¢ is composed of
the eigenvectors associated withargest eigenvalues of the
correlation matrixR,, defined for the set of input vectars
Taking the value of. equal two or at most three we can
map the originaN-dimensional vectors; into the two or
three—dimensional PCA space, that can be easily
represented in a two- or three-dimensional cootdina
system. Thanks to this the visual inspection of the
trajectories of points representing the faultslefreents can

be performed. Good feature set corresponds to the
trajectories of different faults separated fromheather as
well as possible. The set of features providing best
separation of trajectories of different faults dkdowe
considered as the potential input vectomapplied to the
neural classifier performing the recognition of {hetterns
associated with either fault of the element or witie
nominal state of the circuit. The proposed diagonaststem
structure is presented in Fig. 1.

Measured

Candidate Result
X . )
&Vgg?r%?]?s features of diagnosis
—
Circuit .| Feature o| Feature 5| Neural |—
"] generation 7| selection 7| classifier | :
—>

Fig. 1 The general scheme of the circuit diagnostgystem

3. THE NEURAL CLASSIFIER

The important role in our diagnostic system fudfithe
neural classifier, performing the final recognitiaf the
circuit state on the basis of the applied inputuesavector
X. In our solution we have applied the Support Vecto
Machine (SVM) classifier, regarded now as the most
effective classification tool [10,12]. The distinatlvantage
of the SVM network solution is its good generaliaat

magnitude andarg for the phase of the corresponding apility. Trained on the limited number of represgive
complex values. Therefore the maximum size caneidat examples of each fault, the network is able to gaie the
feature vectox that may be used in learning, is given by non-ideal (parametric) fault in the wide range fué faulty
X = ViVl il ] . However different candidate vectors parameter values associated with the assumed rioteraf
formed as the combinations &, I, V, andl, may be  the non-faulty elements.

also  considered, for example x=|V,,V,I,], SVM is a linear system working in the highly

X =[vm,vp,| p)J, X :[Vm,lm] or even in extreme cases dimensional feature space formed by the nonlinesppimg

x:[V ] x:[l ] etc of the N-dimensional input vectox into a K-dimensional
md? mir feature spacekN) through the use of a mapping function

Many different feature assessment methods are knowr#(x) . The SVM network recognizes between two classes,
and applied in practice [3]. To the most populatobg represented bgi=1 andd,=-1. In the classification mode the
principal component analysis (PCA), correlationséRri equation of the separating hyperplane is given g t
among features, correlation between the featuresthe
classes, statistical analysis of mean and variafcéhe
features or even application of SVM feature rankingthis
work we have applied the PCA based assessmenteof tho(X) = [¢1(X),...,¢K(X)]T is a vector of mapping functions
features quality.

K
relation  y(x) =w'e(x)+b= ij¢j (x)+ b=0, where
i=1

of hidden units andw =[W1,...,WK]T is the weight vector.

The parameters of the hyperplarg) are adjusted in a way
to maximize the distance Dbetween the closest
representatives of both classes. The primary legrni

The PCA [4] is described as the linear transforomati
y=Wx, mapping the N-dimensional original vectointo
L-dimensional output vectoy, whereL<N. The vectory



problem [10,12] is formulated as the minimizatiohtoe
objective functiong(w,&)

owE) =2 ww+CY @

against one or one against all methods [5]. Theemor

powerful is one against one approach in which maxiv
networks are trained to recognize between all caatlmns
of two classes of data. Al classes we have to trab(M-
1)/2 individual SVM networks. In the retrieval modee

vector X belongs to the class of the highest number of

at the linear constraints defined for each learndaia o ) L
winnings in all combinations of classes.

sample (i=1, 2, ..., p) witl§; - the slack variable
d (WT¢(X)+b)21_<(i The' important point in d_esigning _SVM cla_ssifier tise

3) choice of the kernel function. The simplest linkarnel is

§ =20 usually inefficient due to the lack of linear segaility of

The first term in equation (2) corresponds to the the data. The polynomial kernel may be also usgithigh
maximization of the margin of separation. The canst is degree of polynomial is needed, since in such thse
the regularization parameter responsible for thesystem is becoming badly conditioned. The bestliesne
minimization of the learning errors. The higheiitssvalue usually obtained at application of Gaussian keamal this

the bigger is the impact of this term on the fipatameters  kernel has been applied in all further experiments.
of the hyperplane.

The most distinctive fact about SVM is that therihdag
task is reduced to the quadratic programming
introducing the so-called Lagrange multipliers . All

operations in learning and testing modes are dorgViM
by using kernel functions satisfying Mercer coratis [12].

The kernel is defined as
higher value ofC we get the lower number of classification

K(x,X;) =¢' (x))o(x) (4) errors of the learning data points, but more comple
The most often used kernels include radial Gaussiannetwork structure. The optimal value was determifed
polynomial, spline or linear functions [10]. Thendi each pair of classes independently after additiseaks of
problem of learning SVM, formulated as the task of learning experiments through the use of the vabdatest
separating learning vectors; into two classes of the Sets. The process of optimizing the valueandc was
destination values, eithedi=1 or d=-1, with maximal done together. Many different values©fands combined
separation margin, is reduced to the dual maxinoimat together have been used in the learning processthemid
problem of the quadratic function [10] optimal values are those for which the classifaaterror
on the validation data set was the smallest one. S¥iM
networks were trained using Platt algorithm [7].

On the stage of designing the SVM classifier systieen
choice of the Gaussian spreadand the regularization
byconstantC is very essential. Especially important is the
value of C, since it controls the tradeoff between the

complexity of the machine and the number of norasaigle
data points used in learning. The small valu€ gésults in
the acceptation of more not separated learningt@o#t

p p P
max Q(e) =) a —%ZZaiajdide(xi ,xj) (5)
i=1 i=1j=1 To assess the performance of our diagnostic system
properly we have compared it with the applicatioh o
MultiLayer Perceptron (MLP) used as the classifMt.P
is the most known and typical multilayer neuralwatk
solution [4] applying the sigmoidal activation fuion. It
performs the classification of data in one simpglacture
(no need for many classifiers, as in SVM case). The
results of numerical experiments performed for shene
data sets have confirmed the superiority of theppsed
SVM solution.

p
with the linear constraintsy_ a;d, =0, 0<a, <C. The

i=1
regularizing paramete€ determines the balance between
the complexity of the network, characterized by wedght
vector w and the error of classification of data. For the
normalized input signals the value 6fis usually much
higher than 1 and is adjusted by the cross vatidati
procedure. The solution of (5) is expressed thioube
Lagrange multipliers, on the basis of which theiropt
weight vectomw,,is determined

4. THE CIRCUIT UNDER TEST

Nsy
Wopt = Zaidi(P(Xi) (6) The theoretical considerations presented in the
= previous sections will be illustrated on the exaenpt the
prototype of the resistively terminated passive la@der

filter of 9" order presented in Fig. 2
Nsy
y(x) = 2 o diK(x;,x) +b Q)
i=1

The signaly(x) greater than 0 is associated with class 1 anc vinW_
the negative with the opposite one. Although SVM TC1 TCQ TC3 TC4
o]

separates the data into two classes only, the nitmy of
Fig. 2 The RLC ladder filter structure

In this equatioNy, means the number sfipport vectors, i.e.
the learning vectors;, for which the Lagrange multipliers are
nonzero. The output signal x( of the SVM network is
determined now as the function of kernels

more classes is straightforward by applying eitlae



It is the ninth order circuit containing 11 elermrgenthe
elements of the filter have been adjusted to redlie low-
pass characteristics in the normalized range afuftacies.
The normalized values of the elements used in @xpats
were as follows: RR;=1, G=0.2, G=0.72, G=1.46,
C,=0.691, G=0.290, L=0.408, L=0.509, L=0.730,
L,=0.340. Only the terminal points of the circuit are
accessible for measurements.

The diagnostic task is to find out if the elemealue is
different from its nominal one by more than theusssd
tolerance limit (10%). Such case is regarded azuh.fWe
consider the single faults of elements (only onaltya
element at the same time). It means that any kiriduit of
the element is associated now with one class. ¢h sase
we have 12 types of circuit operations. One clapsasents
the normal operation and 11 classes are associatiedhe
fault of any of its eleven circuit elements.

Two terminal measurements are available
network. At sinusoidal voltage excitation and reégéesload
(R,) at the output terminal, the input currdnand output

in the

After performing the sensitivity analysis we hawairid 21
and 20 different frequency points correspondingthe
extremes of the magnitude and phase of the outgtage,
respectively, as well as 24 and 25 frequency points
corresponding to the extremes of the magnitude prase
characteristics of the input current. At such numbé
frequency points the vector of magnitude voltage
characteristics/,, is composed of 21 elements, the phase
voltage characteristicg, — 20 elements, the magnitude of
the input current vectdr,, — 24 elements and the phase of
the input current vectol, — 25 elements. Hence the
maximal dimension of the feature veciois 90.

We have considered here the parametric faults ef th
circuit elements. As the faults we understand ladinges of
the nominal values of resistances, inductances and
capacitances beyond the assumed tolerance limib (ib0
experiments). Each fault has been associated whi¢h t
tolerance of the remaining non-faulty elements,ngfiag
randomly in the experiments from 0 to 5%.

voltageV at different frequencies can be determined. On the5. THE RESULTS OF NUMERICAL EXPERIMENTS

basis of these measured values we will generate the

candidate features that may form the input vegtéor the
SVM network, using equation (1). We may rely henetloe
magnitude and phase frequency characteristicsesettwo
measured variables. The frequency values used én
analysis of the circuit should be chosen first. yl tave
been determined by the sensitivity analysis of dhginal
circuit. The frequency set is composed of all fiexagies for
which we have observed the extremes of either nhadmi
or phase sensitivity characteristics of the outmlitage and
input current. Fig. 3 presents the exemplary faumsgivity
curves for the magnitude and phase of the outpliag®
frequency characteristics obtained by using NAPgEm
[9] with respect to two capacitancess;(@hd G) and two
inductances (L and Ly). The points corresponding to the
extreme values of the sensitivity functions areseimoas the
frequencies for the analysis of the filter. Theyrevased for
the generation of the learning and testing data.

Sensitivity functions
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Fig. 3 The sensitivity of the magnitude and phasef the output voltage
of the tested circuit

The first important question is of the optimal faat
representation of the measured data. All combinatiof
the magnitude and phase information contained & th

thnormalized output voltage and input current (vextdy,

Vp, Im, |p) may form the feature vectar The same number
of each case (either appropriate fault or normarafion)
was used in experiments. The principal componealyais

of the normalized data at different arrangementtrod
feature vectors has been performed. After assesaiing
results by visual inspection we have come to theksion
that the full length vectoxk is not the best one since the
combination of the magnitudes of the output voltagel
input currentx=[V, | ,] has provided a bit better separation
of different fault trajectories.

Fig. 4 presents the PCA representation of the iegrn
data corresponding to the best arrangement (theceed
dimension vector composed only of the magnitude
informationx=[V , I ]).

PCA distribution of the data representing 12 classes
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Even in this figure the unique interpretation of tlesults is
not easy since the distribution of the points bgiog to 12
classes (11 faults of element plus the normal djoeraf

the circuit) is extremely complex, especially velgse to
the center (normal operation of the circuit).

The next experiments have been directed to cheek th
efficiency of different representations of the featvectorx

for the fault recognition by the SVM network. Wevbka
used different possible combinations of magnitudel a
phase information to form feature vecigrbeginning from
the single individual vectors and ending on all tbém
combined together xE[V, Vp Im 1g]). The numerical
experiments of classification by using Gaussiannéker
SVM working in one against one mode, have been
performed for the data samples evenly split fordeay and
testing sets (420 samples for each faulty elemeahtfar the
normal state of the circuit). All different sets fefatures
forming the vectorx have been tried in experiments. The
testing data have been applied only in the testiogle of
the trained SVM network. Here we will show the fesu
corresponding to 5% tolerance of the non-faultyrelets.

To deal with 12 classes we have applied one agaimst
strategy [4], resulting in learning 66 individualVig
classifiers, recognizing two classes at a time.

Table 1 presents the cumulative comparison of the
average testing misclassification rate in percentag
corresponding to different representations of tkature
vectorX. The results are given for the normal operation of
the circuit (all element values within the toleraniémit)
and for the faulty mode of operation. The faultelEments
have been distributed in the wide considered regfon
which the particular element value differs more ntha
allowed by the tolerance (10%). The faulty elements
changed from 0.05 to 0.9 and from 1.1 to 10 ofrthei
nominal values. In the case of faulty mode openatite
mean values of the misclassification rate withih &l
classes have been calculated and presented ialtlee t

Table 1 Summary of the misclassification rate of ta testing data at
different representations of the feature vector x

Representation Total misclassification rate
of feature
vector Normal Faulty Mean
operation mode

X=[Vin lm Vp 1] | 3.1% 0.41% 0.63%
X=[Vin I Vil 5.0% 0.41% 0.69%
X=[Vin I 1) 0.72% 0.58% 0.60%
X=[Vin Vo 1] 4.7% 0.39% 0.65%
X=[1m Vp 1] 5.0% 0.45% 0.73%
X=[Vin Il 0.24% 0.54% 0.52%
X=[Vin 1] 1.7% 0.76% 0.81%
X=[Vim Vil 5% 0.58% 0.85%
X=[1m 1) 2.67% 1.19% 1.28%
X=[1m V)l 4.7% 0.39% 0.66%
x=[l, V] 2.9% 0.87% 1.04%
X=V 6.7% 1.71% 2.01%
X=Vp, 4.67% 1.04% 1.26%
X=l 3% 1.34% 1.44%
x=lp 1.33% 1.60% 1.59%

The mean error (last column of the table) is coragas
the ratio of the total nhumber of misclassificaticios the
number of samples used in the experiments (atdlisfand
equal representation of classes the faults havdoprmant
impact on the mean results).

The summary results presented in Table 1 pointhatt
many different representations, providing similavel of
misclassification ratio are possible. If we tak&iaccount
the mean value of the total error, the best seenixetthe
reduced representation of the feature vext¥ , | ). It is
interesting that some partial representations efféatures,
for examplex=[V n ] or x=[V,V, | ] are also very good
for recognition of the faults of elements and evmsiter
than full set of features.

Table 2 presents the detailed results of faultymelet
recognition at testing mode of the trained SVM ratwv
using testing set (not taking part in learning) foe best
selected representation of the featuregy, I ,]. The first
column shows which element is faulty and the seaomal—

the average misclassification rate (in percentage)
corresponding to the particular fault.

Table 2 The results of testing the SVM classifierrothe data samples
corresponding to different faults at the feature vetor x=[vp, im]

Faulty | Misclassification
element rate
No fault 0.24%

Ry 0

C 0.71%

C, 0

Cs 0.24%

(o 0.71%

Cs 2.86%

L, 0

L, 0

L 0

Ly 0.95%

R, 0.48%
Mean 0.52%

As it is seen the overall accuracy of the faulogration at

the uniform distribution of data in the whole regiof the

considered fault is satisfactory from the practipalnt of

view. In the worst case (the fault of elemen} the average
misclassification rate was 2.86%. The misclasdifice
ratio of the single fault of most elements has bestuced
to the insignificant or even zero values. The tetaérage
error of the fault recognition, calculated as thdimary

mean of all errors, has been reduced to the vdlQba%.

The detailed observation of error distribution hegealed
that most errors were committed for the data plaoery
close to the border of the normal operation (themeint
values variation slightly below or above the toler& limit
of 5% and at the border of the faulty state (sligiessing of
the assumed 10% tolerance limit regarded as a).falidt
check in details how the classifier system is ableleal
with this kind of data we have generated additicsedl of
data corresponding to the nominal element valuasepl



close to the tolerance limi6@b + 2%) and the faults placed
on the border of the assumed tolerad€®s + 2%). Once

again the non-faulty elements have been disturbe
randomly within the tolerance Ilimit£3%. In this
experiment half of the data generated in this way lbeen
added to the already existing learning set andther half
was left for testing only. So in the experiment testing
data set contained only these most difficult casdse
testing has been performed for the SVM networkane¢d
using the extended learning data set containing tie
additional data representing the region very cltisehe
tolerance limit. The performed test was extremeffjcdilt
since the testing set contained only the data miiftult

for the recognition. However, even in this veryrdading
test the results are fairly acceptable. For masmehts the
fault recognition error was below 6%, although the
recognition of some faults has been done with lager
reaching in worst case even 40% (the capacit)r The
average misclassification rate calculated as ti@lsi mean

of all average errors was equal in this test 14.5%.

To check the impact of frequencies on the accucddhe
diagnostic system we have made additional expetisnen
by applying the random choice of frequency valueshie
analysis of the filter. The number of frequencyntsiof
the analysis of the circuit was changing from 102t
Their distribution was also changing. The SVM syste
has been trained and then tested using the sameenwh
testing data. The total misclassification ratiotba testing
data was this time higher and dependent on the aumb
and distribution of the frequency analysis poimis.10
frequencies and their random distribution withine th
normalized range from 0O to 2 the average classifina
error was close to 1.5% (the actual values depenthe
actually generated random values of elements). &t 2
frequency points distributed randomly in the saraege
the average classification error has dropped toéthee of
0.78%. The results of this test confirm the impoce of
the sensitivity analysis applied for choosing thenber of
frequency points used in the preparation of thea datd
the selection of their particular values.

In the last experiments we have compared the acgura

of our SVM based diagnostic system with the one[6]

applying the MLP classifier. The optimal MLP netkor
containing 90 inputs, 20 hidden and 12 output sigialo

neurons was learned using the same data set dsein t

previous experiments and then tested on the teskitg.
The obtained results are inferior in comparisonthe
SVM. The mean classification error for the testihgta

was equal 5.43%, which is much higher than 0.52%][9]

obtained by the SVM classifier. Besides this thaning
of the MLP classifier was extremely time consuming
comparison to SVM one. At the same number of dé2a (
samples of each of 12 classes) and application Mf L
algorithm it lasted at least 50 times longer.

6. CONCLUSION

The paper has presented the new approach to the fau

detection and location in an analog circuit, basadthe

application of Support Vector Machine. The mosfidifit
case of the parametric faults of circuit elemerds been
onsidered. The numerical experiments conductedhfer
" order RLC ladder filter have confirmed that the
developed diagnostic system works well and is able
locate the single faults with the acceptable aamurfar
the whole range of parameter values from the tokza
limit to the short circuit or open circuit of théeeent. The
important feature of the proposed solution is iighh
efficiency and great speed of operation. The ingjrof
the SVM network system, performed using Platt gtbar
[7] was very quick. At 5040 data pairs and 12 dasi
lasted no longer than 3 minutes on the PC compaifter
2.4GHz and 512M RAM. Moreover, once the network was
trained, the recognition of fault was achieved irdragely,
irrespective of the size of the circuit. Thus tledusion is
suited for the real time applications for fault elgtfon and
location in any linear circuit.

The distinct advantage of the SVM network solution
over the standard MLP case is its good generaizati
ability. Trained on the limited number of represdive
examples of each fault, the network is able to gacze the
non-ideal (parametric) fault in the wide range bheged
parameter values and at some assumed toleranke nbn-
faulty elements.
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