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Abstract: The paper is concerned with the application of 
the Support Vector Machine to the discovering of the 
parametric fault in analog electrical circuits. The 
recognition of fault is based on the measurements of the 
accessible terminal voltage and current of the circuit at the 
set of frequencies. The SVM network fulfills the role of the 
recognizing system and of the classifier. The numerical 
results of recognition of faulty elements in the LC filter of 
the ladder network structure are presented and discussed in 
the paper. 
  
Keywords: SVM classifiers, parametric fault detection, 
diagnosis of circuits. 

1.    INTRODUCTION 

The paper presents the neural approach to the detection 
of the parametric fault and its location in analog electrical 
circuits on the basis of the external measurements of the 
voltages and currents. It is assumed that the general 
structure of the circuit under investigation is known. The 
fault of element is understood as the parametric change of 
its value beyond the assumed tolerance limit [1,2,6]. Only 
fault of one element at a time is considered. The detection 
of the faulty element is performed on the basis of the 
measurements of the terminal signals, i.e., the terminal 
voltages and currents of the circuit, operating in the normal 
and faulty conditions. The measured signals should undergo 
the stage of preprocessing to extract the diagnostic features 
of the obtained information. These features form the input 
signals to the neural network, performing the role of 
classifier. 

The neural network of the Support Vector Machine 
(SVM) type is trained on the examples of the patterns 
belonging to the normal operation of the circuit and to the 
representatives of the typical faults of the particular 
element. The important advantage of the neural method is 
its ability to treat efficiently the parametric changes of the 
values of the faulty elements. The method is effective and 
offers a great speed and acceptable accuracy for the fault 
detection in the large range of parameter changes. In 
comparison to the standard neural networks, like the 
multilayer perceptron or self-organizing Kohonen network 
[1,2,8] SVM offers much better generalization ability at 

limited number of training samples. The results concerning 
the recognition of single element faults in the resistively 
terminated LC prototype ladder filter are presented and 
discussed. They confirm great efficiency of the developed 
diagnostic system. 

2.    PRINCIPLE OF FAULT RECOGNITION AND 
LOCATION 

In the recognition and localization of fault in analog 
electrical circuit it is assumed, that the general structure of 
the circuit under investigation is known [8]. The user is able 
to measure the external voltages and currents of the circuit, 
operating in the normal and faulty conditions in the steady 
state under sinusoidal excitation. We assume the fault of 
element as the parametric change of its value above the 
assumed tolerance limit.  

The basic observation is that each state of the circuit, 
either normal or any single fault, is associated with the 
specific frequency characteristics of the magnitude and 
phase of the measured variables. These characteristics differ 
to some degree at various faults. The differences between 
the nominal and faulty states are used by us to make the 
recognition of the particular state of the circuit. This will be 
done by the neural classifier network. The classifier is 
trained on the data representing different examples of the 
nominal and faulty states of the circuit. After training, the 
parameters of the classifier are frozen and the system is 
ready for the on-line operation of the diagnostic task.  

Let us assume that there is a sufficient number of 
independent signal measurements in the circuit, greater 
than the number of elements in the analog circuit of 
known topology and nominal values of its elements [8,11]. 
The measurements are concerned with the external 
accessible points at different frequencies. These 
frequencies should be chosen in a way to enhance the 
differences between different states of the circuit. Hence 
special procedure of frequency selection should be 
applied. The important point is to provide the highest 
sensitivity of the system to any changes in the parameters 
of the circuit element. Hence the natural way to determine 
the optimal set of frequencies is the application of the 
sensitivity analysis of the circuit [1]. The sensitivity 



curves of the magnitude and phase of the external 
measured variables with respect to the circuit elements are 
generated. The frequencies corresponding to the maxima 
of the absolute values of these curves are the candidates for 
testing frequencies.  

The next step is to convert the measured variables into 
the diagnostic features. They should be normalized and at 
the same time as sensitive as possible to the changes of the 
parameters of the elements. To differentiate the feature 
values corresponding to individual faults we consider here 
the relative differences between the faulty and non-faulty 
modes of the circuit operation. Applying the general 
notation x for either measured voltage V or current I 
(magnitude or phase) we define the feature as the relative 
difference of this variable at nominal and actual 
(presumably faulty) state of the circuit at the frequency fi,  
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The variable xn(fi) means the measured quantity under 
non-faulty (nominal) operation of the circuit at the 
frequency fi. The generated features xr(fi) are the 
candidates for the input vector x defining the input signals 
for the classifier.  

The next step is the validation and selection of the 
candidate set of features. Let us assume that the 
measurements have been done for one voltage and current 
of the circuit at the set of frequencies, for which the 
diagnostic features have been generated for the magnitude 
and phase according to eq. (1). As a result we get four 
possible candidate vectors: )( rm abs VV = , )arg( rp VV = , 

)( rm abs II =  and )arg( rp II = , where the vector of 

voltages [ ])(),...,(),( 121 mrrrr fVfVfV=V  and currents 

[ ])(),...,(),( 221 mrrrr fIfIfI=I  represent relative voltages 

and currents of the terminals at different frequencies fi, 
normalized according to the relation (1), abs stands for the 
magnitude and arg for the phase of the corresponding 
complex values. Therefore the maximum size candidate 
feature vector x that may be used in learning, is given by 

[ ]pmpm IIVVx ,,,= . However different candidate vectors 

formed as the combinations od Vm, I m, Vp and Ip  may be 
also considered, for example [ ]mpm IVVx ,,= , 

[ ]),, ppm IVVx = , [ ]mm IVx ,=  or even in extreme cases 

[ ]mVx = , [ ]mIx = , etc. 

Many different feature assessment methods are known 
and applied in practice [3]. To the most popular belong 
principal component analysis (PCA), correlation existing 
among features, correlation between the features and the 
classes, statistical analysis of mean and variance of the 
features or even application of SVM feature ranking. In this 
work we have applied the PCA based assessment of the 
features quality. 

The PCA [4] is described as the linear transformation 
y=Wx, mapping the N-dimensional original  vector x into 
L-dimensional output vector y, where L<N. The vector y 

preserves the most important elements of the original 
information. The transformation matrix W is composed of 
the eigenvectors associated with L largest eigenvalues of the 
correlation matrix Rxx defined for the set of input vectors xi. 
Taking the value of L equal two or at most three we can 
map the original N-dimensional vectors xi into the two or 
three–dimensional PCA space, that can be easily 
represented in a two- or three-dimensional coordinate 
system. Thanks to this the visual inspection of the 
trajectories of points representing the faults of elements can 
be performed. Good feature set corresponds to the 
trajectories of different faults separated from each other as 
well as possible. The set of features providing the best 
separation of trajectories of different faults should be 
considered as the potential input vector x applied to the 
neural classifier performing the recognition of the patterns 
associated with either fault of the element or with the 
nominal state of the circuit. The proposed diagnostic system 
structure is presented in Fig. 1. 

 

 
 

Fig. 1 The general scheme of the circuit diagnostic system 

3.    THE NEURAL CLASSIFIER 

The important role in our diagnostic system fulfills the 
neural classifier, performing the final recognition of the 
circuit state on the basis of the applied input feature vector 
x. In our solution we have applied the Support Vector 
Machine (SVM) classifier, regarded now as the most 
effective classification tool [10,12]. The distinct advantage 
of the SVM network solution is its good generalization 
ability. Trained on the limited number of representative 
examples of each fault, the network is able to recognize the 
non-ideal (parametric) fault in the wide range of the faulty 
parameter values associated with the assumed tolerance of 
the non-faulty elements. 

SVM is a linear system working in the highly 
dimensional feature space formed by the nonlinear mapping 
of the N-dimensional input vector x into a K-dimensional 
feature space (K>N) through the use of a mapping function 

)(xϕ . The SVM network recognizes between two classes, 

represented by di=1 and di=-1. In the classification mode the 
equation of the separating hyperplane is given by the 
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of hidden units and [ ]TKww ,...,1=w  is the weight vector. 

The parameters of the hyperplane y(x) are adjusted in a way 
to maximize the distance between the closest 
representatives of both classes. The primary learning 



problem [10,12] is formulated as the minimization of the 
objective function ),( ξwφ  
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at the linear constraints defined for each learning data 
sample (i = 1, 2, ..., p) with iξ  - the slack variable 
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The first term in equation (2) corresponds to the 
maximization of the margin of separation. The constant C is 
the regularization parameter responsible for the 
minimization of the learning errors. The higher is its value 
the bigger is the impact of this term on the final parameters 
of the hyperplane. 

The most distinctive fact about SVM is that the learning 
task is reduced to the quadratic programming by 
introducing the so-called Lagrange multipliers iα . All 

operations in learning and testing modes are done in SVM 
by using kernel functions satisfying Mercer conditions [12]. 
The kernel is defined as  
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The most often used kernels include radial Gaussian, 
polynomial, spline or linear functions [10]. The final 
problem of learning SVM, formulated as the task of 
separating learning vectors xi into two classes of the 
destination values, either di=1 or di=-1, with maximal 
separation margin, is reduced to the dual maximization 
problem of the quadratic function [10] 
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regularizing parameter C determines the balance between 
the complexity of the network, characterized by the weight 
vector w and the error of classification of data. For the 
normalized input signals the value of C is usually much 
higher than 1 and is adjusted by the cross validation 
procedure. The solution of (5) is expressed througth the 
Lagrange multipliers, on the basis of which the optimal 
weight vector wopt is determined  
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 In this equation Nsv means the number of support vectors, i.e. 
the learning vectors xi, for which the Lagrange multipliers are 
nonzero. The output signal y(x) of the SVM network is 
determined now as the function of kernels 
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The signal y(x) greater than 0 is associated with class 1  and 
the negative with the opposite one. Although SVM 
separates the data into two classes only, the recognition of 
more classes is straightforward by applying either one 

against one or one against all methods [5]. The more 
powerful is one against one approach in which many SVM 
networks are trained to recognize between all combinations 
of two classes of data. At M classes we have to train M(M-
1)/2 individual SVM networks. In the retrieval mode the 
vector x belongs to the class of the highest number of 
winnings in all combinations of classes. 

The important point in designing SVM classifier is the 
choice of the kernel function. The simplest linear kernel is 
usually inefficient due to the lack of linear separability of 
the data. The polynomial kernel may be also useless, if high 
degree of polynomial is needed, since in such case the 
system is becoming badly conditioned. The best results are 
usually obtained at application of Gaussian kernel and this 
kernel has been applied in all further experiments.  

On the stage of designing the SVM classifier system the 
choice of the Gaussian spread σ and the regularization 
constant C is very essential. Especially important is the 
value of C, since it controls the tradeoff between the 
complexity of the machine and the number of non-separable 
data points used in learning. The small value of C results in 
the acceptation of more not separated learning points. At 
higher value of C we get the lower number of classification 
errors of the learning data points, but more complex 
network structure. The optimal value was determined for 
each pair of classes independently after additional series of 
learning experiments through the use of the validation test 
sets. The process of optimizing the values of C and σ was 
done together. Many different values of C and σ combined 
together have been used in the learning process and their 
optimal values are those for which the classification error 
on the validation data set was the smallest one. The SVM 
networks were trained using Platt algorithm [7]. 

To assess the performance of our diagnostic system 
properly we have compared it with the application of 
MultiLayer Perceptron (MLP) used as the classifier. MLP 
is the most known and typical multilayer neural network 
solution [4] applying the sigmoidal activation function. It 
performs the classification of data in one simple structure 
(no need for many classifiers, as in SVM case). The 
results of numerical experiments performed for the same 
data sets have confirmed the superiority of the proposed 
SVM solution. 

4.    THE CIRCUIT UNDER TEST 

The theoretical considerations presented in the 
previous sections will be illustrated on the example of the 
prototype of the resistively terminated passive LC ladder 
filter of 9th order presented in Fig. 2 

 

Fig. 2 The RLC ladder filter structure 



It is the ninth order circuit containing 11 elements. The 
elements of the filter have been adjusted to realize the low-
pass characteristics in the normalized range of frequencies. 
The normalized values of the elements used in experiments 
were as follows: Ro=R1=1, C1=0.2, C2=0.72, C3=1.46, 
C4=0.691, C5=0.290, L1=0.408, L2=0.509, L3=0.730, 
L4=0.340. Only the terminal points of the circuit are 
accessible for measurements.  

The diagnostic task is to find out if the element value is 
different from its nominal one by more than the assumed 
tolerance limit (10%). Such case is regarded as a fault. We 
consider the single faults of elements (only one faulty 
element at the same time). It means that any kind of fault of 
the element is associated now with one class. In such case 
we have 12 types of circuit operations. One class represents 
the normal operation and 11 classes are associated with the 
fault of any of its eleven circuit elements. 

Two terminal measurements are available in the 
network. At sinusoidal voltage excitation and resistive load 
(Ro) at the output terminal, the input current I and output 
voltage V at different frequencies can be determined. On the 
basis of these measured values we will generate the 
candidate features that may form the input vector x for the 
SVM network, using equation (1). We may rely here on the 
magnitude and phase frequency characteristics of these two 
measured variables. The frequency values used in the 
analysis of the circuit should be chosen first. They have 
been determined by the sensitivity analysis of the original 
circuit. The frequency set is composed of all frequencies for 
which we have observed the extremes of either magnitude 
or phase sensitivity characteristics of the output voltage and 
input current. Fig. 3 presents the exemplary four sensitivity 
curves for the magnitude and phase of the output voltage 
frequency characteristics obtained by using NAP program 
[9] with respect to two capacitances (C3 and C5) and two 
inductances (L1 and L3). The points corresponding to the 
extreme values of the sensitivity functions are chosen as the 
frequencies for the analysis of the filter. They were used for 
the generation of the learning and testing data. 

 

 
Fig. 3 The sensitivity of the magnitude and phase of the output voltage 

of the tested circuit  

After performing the sensitivity analysis we have found 21 
and 20 different frequency points corresponding to the 
extremes of the magnitude and phase of the output voltage, 
respectively, as well as 24 and 25 frequency points 
corresponding to the extremes of the magnitude and phase 
characteristics of the input current. At such number of 
frequency points the vector of magnitude voltage 
characteristics Vm is composed of 21 elements, the phase 
voltage characteristics Vp – 20 elements, the magnitude of 
the input current vector I m – 24 elements and the phase of 
the input current vector Ip – 25 elements. Hence the 
maximal dimension of the feature vector x is 90. 

We have considered here the parametric faults of the 
circuit elements. As the faults we understand all changes of 
the nominal values of resistances, inductances and 
capacitances beyond the assumed tolerance limit (10% in 
experiments). Each fault has been associated with the 
tolerance of the remaining non-faulty elements, changing 
randomly in the experiments from 0 to 5%. 

5.   THE RESULTS OF NUMERICAL EXPERIMENTS 

The first important question is of the optimal feature 
representation of the measured data. All combinations of 
the magnitude and phase information contained in the 
normalized output voltage and input current (vectors Vm, 
Vp, Im, Ip) may form the feature vector x. The same number 
of each case (either appropriate fault or normal operation) 
was used in experiments. The principal component analysis 
of the normalized data at different arrangement of the 
feature vectors has been performed. After assessing all 
results by visual inspection we have come to the conclusion 
that the full length vector x is not the best one since the 
combination of the magnitudes of the output voltage and 
input current, x=[Vm I m] has provided a bit better separation 
of different fault trajectories.  

Fig. 4 presents the PCA representation of the learning 
data corresponding to the best arrangement (the reduced 
dimension vector composed only of the magnitude 
information x=[Vm I m]).   

 
Fig. 4 The PCA representation of the measured data for the best 

feature vector  x=[Vm Im] 



Even in this figure the unique interpretation of the results is 
not easy since the distribution of the points belonging to 12 
classes (11 faults of element plus the normal operation of 
the circuit)  is extremely complex, especially very close to 
the center (normal operation of the circuit).  

The next experiments have been directed to check the 
efficiency of different representations of the feature vector x 
for the fault recognition by the SVM network. We have 
used different possible combinations of magnitude and 
phase information to form feature vector x, beginning from 
the single individual vectors and ending on all of them 
combined together (x=[Vm Vp I m I p]). The numerical 
experiments of classification by using Gaussian kernel 
SVM working in one against one mode, have been 
performed for the data samples evenly split for learning and 
testing sets (420 samples for each faulty element and for the 
normal state of the circuit). All different sets of features 
forming the vector x have been tried in experiments. The 
testing data have been applied only in the testing mode of 
the trained SVM network. Here we will show the results 
corresponding to 5% tolerance of the non-faulty elements. 
To deal with 12 classes we have applied one against one 
strategy [4], resulting in learning 66 individual SVM 
classifiers, recognizing two classes at a time. 

Table 1 presents the cumulative comparison of the 
average testing misclassification rate in percentage, 
corresponding to different representations of the feature 
vector x. The results are given for the normal operation of 
the circuit (all element values within the tolerance limit) 
and for the faulty mode of operation. The faults of elements 
have been distributed in the wide considered region, for 
which the particular element value differs more than 
allowed by the tolerance (10%). The faulty elements 
changed from 0.05 to 0.9 and from 1.1 to 10 of their 
nominal values. In the case of faulty mode operation the 
mean values of the misclassification rate within all 11 
classes have been calculated and presented in the table.  
 

Table 1 Summary of the misclassification rate of the testing data at 
different representations of the feature vector x 

Total misclassification rate  Representation 
of feature 

vector  Normal 
operation 

Faulty 
mode 

Mean 

x=[Vm I m Vp Ip] 3.1% 0.41% 0.63% 
x=[Vm I m Vp] 5.0% 0.41% 0.69% 
x=[Vm I m Ip] 0.72% 0.58% 0.60% 
x=[Vm Vp Ip] 4.7% 0.39% 0.65% 
x=[I m Vp Ip] 5.0% 0.45% 0.73% 
x=[Vm I m] 0.24% 0.54% 0.52% 
x=[Vm Ip] 1.7% 0.76% 0.81% 
x=[Vm Vp] 5% 0.58% 0.85% 
x=[I m Ip] 2.67% 1.19% 1.28% 
x=[I m Vp] 4.7% 0.39% 0.66% 
x=[Ip Vp] 2.9% 0.87% 1.04% 
x=Vm 6.7% 1.71% 2.01% 
x=Vp 4.67% 1.04% 1.26% 
x=I m 3% 1.34% 1.44% 
x=Ip 1.33% 1.60% 1.59% 

The mean error (last column of the table) is computed as 
the ratio of the total number of misclassifications to the 
number of samples used in the experiments (at 11 faults and 
equal representation of classes the faults have predominant 
impact on the mean results).  

The summary results presented in Table 1 point out that 
many different representations, providing similar level of 
misclassification ratio are possible. If we take into account 
the mean value of the total error, the best seems to be the 
reduced  representation of the feature vector x=[Vm I m]. It is 
interesting that some partial representations of the features, 
for example x=[Vm I m Ip] or x=[Vm Vp Ip] are also very good 
for recognition of the faults of elements and even better 
than full set of features.  

Table 2 presents the detailed results of faulty element 
recognition at testing mode of the trained SVM network 
using testing set (not taking part in learning) for the best 
selected representation of the features, x=[Vm I m ]. The first 
column shows which element is faulty and the second one – 
the average misclassification rate (in percentage) 
corresponding to the particular fault.  
 
Table 2 The results of testing the SVM classifier on the data samples 
corresponding to different faults at the feature vector x=[vm im] 

Faulty 
element 

Misclassification 
rate 

No fault 0.24% 
R1 0 
C1 0.71% 
C2 0 
C3 0.24% 
C4 0.71% 
C5 2.86% 
L1 0 
L2 0 
L3 0 
L4 0.95% 
Ro 0.48% 

Mean 0.52% 
 
As it is seen the overall accuracy of the fault recognition at 
the uniform distribution of data in the whole region of the 
considered fault is satisfactory from the practical point of 
view. In the worst case (the fault of element C5) the average 
misclassification rate was 2.86%. The misclassification 
ratio of the single fault of most elements has been reduced 
to the insignificant or even zero values. The total average 
error of the fault recognition, calculated as the ordinary 
mean of all errors, has been reduced to the value of 0.52%.  

The detailed observation of error distribution has revealed 
that most errors were committed for the data placed very 
close to the border of the normal operation (the element 
values variation slightly below or above the tolerance limit 
of 5% and at the border of the faulty state (slight crossing of 
the assumed 10% tolerance limit regarded as a fault). To 
check in details how the classifier system is able to deal 
with this kind of data we have generated additional set of 
data corresponding to the nominal element values placed 



close to the tolerance limit ( %)2%5 ±  and the faults placed 

on the border of the assumed tolerance %)2%10 ± . Once 

again the non-faulty elements have been disturbed 
randomly within the tolerance limit %3± . In this 
experiment half of the data generated in this way has been 
added to the already existing learning set and the other half 
was left for testing only. So in the experiment the testing 
data set contained only these most difficult cases. The 
testing  has been performed for the SVM network retrained 
using the extended learning data set containing also the 
additional data representing the region very close to the 
tolerance limit. The performed test was extremely difficult 
since the testing set contained only the data most difficult 
for the recognition.  However, even in this very demanding 
test the results are fairly acceptable. For most elements the 
fault recognition error was below 6%, although the 
recognition of some faults has been done with large error 
reaching in worst case even 40% (the capacitor C5). The 
average misclassification rate calculated as the simple mean 
of all average errors was equal in this test 14.5%. 

To check the impact of frequencies on the accuracy of the 
diagnostic system we have made additional experiments 
by applying the random choice of frequency values in the 
analysis of the filter. The number of frequency points of 
the analysis of the circuit was changing from 10 to 23. 
Their distribution was also changing. The SVM system 
has been trained and then tested using the same number of 
testing data. The total misclassification ratio on the testing 
data was this time higher and dependent on the number 
and distribution of the frequency analysis points. At 10 
frequencies and their random distribution within the 
normalized range from 0 to 2 the average classification 
error was close to 1.5% (the actual values depend on the 
actually generated random values of elements). At 23 
frequency points distributed randomly in the same range 
the average classification error has dropped to the value of 
0.78%. The results of this test confirm the importance of 
the sensitivity analysis applied for choosing the number of 
frequency points used in the preparation of the data and 
the selection of their particular values.  

In the last experiments we have compared the accuracy 
of our SVM based diagnostic system with the one 
applying the MLP classifier. The optimal MLP network 
containing 90 inputs, 20 hidden and 12 output sigmoidal 
neurons was learned using the same data set as in the 
previous experiments and then tested on the testing data.  
The obtained results are inferior in comparison to the 
SVM. The mean classification error for the testing data 
was equal 5.43%, which is much higher than 0.52% 
obtained by the SVM classifier. Besides this the training 
of the MLP classifier was extremely time consuming in 
comparison to SVM one. At the same number of data (420 
samples of each of 12 classes) and application of LM 
algorithm  it lasted at least 50 times longer. 

6.    CONCLUSION 

The paper has presented the new approach to the fault 
detection and location in an analog circuit, based on the 

application of Support Vector Machine. The most difficult 
case of the parametric faults of circuit elements has been 
considered. The numerical experiments conducted for the 
9th order RLC ladder filter have confirmed that the 
developed diagnostic system works well and is able to 
locate the single faults with the acceptable accuracy for 
the whole range of parameter values from the tolerance 
limit to the short circuit or open circuit of the element. The 
important feature of the proposed solution is its high 
efficiency and great speed of operation.  The training of 
the SVM network system, performed using Platt algorithm 
[7] was very quick. At 5040 data pairs and 12 classes it 
lasted no longer than 3 minutes on the PC computer of 
2.4GHz and 512M RAM. Moreover, once the network was 
trained, the recognition of fault was achieved immediately, 
irrespective of the size of the circuit. Thus the solution is 
suited for the real time applications for fault detection and 
location in any linear circuit.  

The distinct advantage of the SVM network solution 
over the standard MLP case is its good generalization 
ability. Trained on the limited number of representative 
examples of each fault, the network is able to recognize the 
non-ideal (parametric) fault in the wide range of changed 
parameter values and at some assumed tolerance of the non-
faulty elements.  
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