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Abstract 

Conformity assessment is the activity to determine 
whether specified requirements relating to a product, 
process, system, person or body are fulfilled. Often 
measurements are used to show that the measurand is 
within (legal) tolerances. Currently analytical methods 
are available to test whether tolerances are met with a 
preset level of confidence, e.g. 95%. The test requires 
the availability of the overall measurement uncertainty 
and the statistical distribution of the measurand. In 
absence of better information this distribution is 
assumed to be Gaussian. 
The new point in this paper is that Monte Carlo methods 
can be applied directly to perform the conformity 
assessment. The reason is that the Monte Carlo process 
generates the cumulative distribution, whereby the 
(legal) tolerances can be compared directly. The 
advantage of this process is that the type of distribution 
does not need to be known and the (worst case) 
assumption of the distribution being Gaussian can be 
avoided. Consequently, for a Monte Carlo method the 
difference between tolerances and acceptance criteria is 
slightly smaller than for analytical methods. 
A test of the Monte Carlo method applied to a 
calibration of a high-pressure gasmeter meeting MID 
tolerances demonstrates the applicability of the method 
in practice. 
 
Introduction 

Conformity assessment is the activity to determine 
whether specified requirements relating to a product, 
process, system, person or body are fulfilled. Often 
measurements are used to show that the measurand 
falls within (legal) tolerances. Currently analytical 
methods [4] – [8] are available to test whether 
tolerances are met with a preset level of confidence, e.g. 
95%. The test requires the availability of the overall 
measurement uncertainty and the associated 
probability density function. 
The overall uncertainty can be evaluated by analytical 
methods [1], [2] or Monte Carlo simulation [3]. The 
probability density is often assumed to be Gaussian. If 
no exact knowledge of the statistical distribution of the 
measurand is available, the choice for a Gaussian 
distribution is the worst case approximation [4], [5].  
Monte Carlo methods for uncertainty evaluation prove 
to be especially useful in cases where a non-linear 
relationship exists between input quantities and the 
measurand, where the uncertainty is large compared to 
the value of the quantity, or where input quantities can 
only be evaluated numerically by software code. 
 
During verification a measuring instrument is approved 
or rejected on the basis of legal tolerance limits. The 
confidence level of these metrological decisions is 

affected by the uncertainty of the measurand. The 
statistical methods in these publications [4] - [8] have in 
common that substantial knowledge of statistical testing 
is required to perform the tests. 
At this point the new Monte Carlo Method offers an 
interesting opportunity. At the same time the 
uncertainty analysis is made, the statistical testing can 
be performed. Only a few lines of software code need to 
be added to the implementation of the Monte Carlo 
Method. 
NMi has developed a Monte Carlo software tool in which 
this additional feature was implemented. This tool was 
used to apply the Monte Carlo method on the example of 
the verification of a high-pressure gasmeter that has to 
meet MID tolerances [9], [10]. 
 
Calibration model 

The calibration of volume flow gasmeters with high-
pressure natural gas is based on the integral 
formulation of the mass conservation law applied to a 
fixed volume � with surface �. The increase in mass per 
unit time in � equals the mass flow through the surface 
� 
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in which  is the fluid velocity vector and � a normal 
vector of length 1 perpendicular to the surface � 
pointing outside of �. � · �� is the dot product of  and 
�, which means that a fluid flow entering � gets a 
negative sign and a fluid flow leaving � gets a positive 
sign. 
For the calibration � is the volume between the master 
meters and the meter under test (MuT). The fluid enters 
� via the master meters and leaves � via the MuT. Both 
masters and MuT measure gas in volume units. The 
volume � having thick steel walls is assumed to be 
constant in time. As the fluid flow through closed 
conduits the fluid velocity times the cross section is the 
volume flow rate �. With � parallel master meters 
equation (1) can now be written as 

 � ���
�� = −���� + �������

�

���
 (2)  

where the index 1 refers to the cross section at the 
master meters and 2 refers to the MuT. 
The density � is a function of pressure � temperature � 
and the gas composition �: 

 � = ���, �, �� (3)  

The equation of state used to compute � from �, � and 
the gas composition � is in this example the AGA-8 
model[11], which can handle 21 gas components. The 
AGA-8 algorithm will be evaluated numerically. 



The flow rate � is computed from an integer number of 
pulses � collected during a interval  : 

 �!� = �!�
"!� 	 !� ,			�# = �#

"# 	 #
in which " is the impulse factor of the meter [pulse / 
m³].  
The objective of the calibration is to determine the 
deviation $# of the meter under test as a function of the 
flowrate �#  indicated by the MuT 

 $# = �#
��

− 1 

In the calibration process corrections are applied for all 
known deviations. For the master meter 
$!�  is depending on calibration pressure and flowrate 
�!�  indicated by master. The correction for this 
deviation leads to 

 ��� = �!�
1 + $!�  

The mass accumulated in � during calibration time 
interval  � is determined from the volume 
densities �!&'(& = ���!&'(& , �!&'(& , �) at the start and 
�)�* = ���)�* , �)�*, � at the end of the calibration
gas composition is assumed to be constant during the 
calibration time interval  � . 
Successive substitution of equations (3
(2) leads to 

 �	 �)�* − �!&'(&
 � = − ��	�#

1 + $# + �
�

���
from which the deviation $# can be solved

$# = 	��	�# "# 	 #+
	��!&'(& − �)�*�	� � + � ��� 	"!� !��1

�
���

 
Statistical testing 

All statistical tests start with the formulation of a 
hypothesis ,-, which in our example 
gasmeter will meet the MID tolerance
measurand with its associated uncertainty is well within 
tolerances, ,- will be accepted. This corresponds to the 
green points in the figure 1 below. If the measurand 
equals the tolerance, there is an equal probability that 
the measurand will and will not meet the tolerances. In 
that case a decision cannot be made. This corresponds 
to the blue points. 
If the null hypothesis ,- cannot be accepted it will be 
possible to test and alternative hypothesis 
states that the measurand is outside the tolerances. If 
the red points are observed, ,� will be accepted. If the 
blue points are found, hypothesis ,�has to be rejected.
Figure 1 below shows that there is a region 
points) in which both ,- and ,� cannot be accepted.
,- is typical for conformity assessment where we need 
to show that meters are conforming. 
hypothesis ,� is typical to inspections where the 
inspector looks for non-conforming products
police enforcing the speed limit. A more elaborate 

is computed from an integer number of 

#
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can be solved: 

	�!��1 + $!��
− 1 (8)
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Figure 1: Conforming (green) and non
measurands. The blue points
non-conforming. 
 
Monte Carlo Method 

The Monte Carlo process is schematically depicted in 
Figure 2. The output quantity 
/ of � input quantities 

probability density function (PDF
chosen, e.g. 100000. Input estimates
for 0 = 1. . � and the output estimate

calculated. This process is repeated
2 = 1. .3. The result is a bin with 
values 45  are sorted in ascending order, which gives the 
cumulative distribution function (CDF
probability density function of 
differentiation of the CDF-Y. 
The estimate of 6 is 47 the average of all 
associated standard uncertainty is the experimental 
standard deviation of all 45 . 
 

Figure 2: Schematic of the Monte Carlo process. 
 
In the next step the 95% coverage interval will be 
obtained. Figure 3 shows the sorted output estimates. 
For any value 48 the probability

smaller than the 9th estimate of 

For 9 = 0 ;<6 = 48> = 0 and for 

An interval covering 95% of the output estimates is 
?48 , 48@-.AB·CD. This corresponds to the blue cells in 

figure 3. The index 9 can now be chosen 
interval is symmetric around 
choose 9 such that the length of the interval 
?48 , 48@-.AB·CD around 47 is minimal

non-symmetrical uncertainty interval
In general the coverage interval between 

;<48 = 6 = 45> = �9 − 2� 3⁄
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Figure 3: Output estimates 
order. The blue cells represent

discussion on this topic can be found in [4] and [5]. For 
the case of our gasmeter we will only test ,-. 
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s are not conforming and not 

The Monte Carlo process is schematically depicted in 
. The output quantity 6 is a function of a vector 

input quantities /G , each with its specific 

probability density function (PDF-j).  Now 3 trials are 
Input estimates �G,5 are generated 

the output estimate 4 = H��G� is 

. This process is repeated for each trial 
. The result is a bin with 3 values of 4. The 
are sorted in ascending order, which gives the 

cumulative distribution function (CDF-Y). The 
probability density function of 4 (PDF-Y) is obtained by 

Y.  
7 the average of all 45 . The 

uncertainty is the experimental 
 

 
of the Monte Carlo process.  

the 95% coverage interval will be 
obtained. Figure 3 shows the sorted output estimates. 

the probability that the value 6 will be 

estimate of 4 is ;<6 = 48> = 9 3⁄ . 

> and for = 3 ;<6 = 48> = 1. 

An interval covering 95% of the output estimates is 
. This corresponds to the blue cells in 

can now be chosen such that the 
interval is symmetric around 47. It is also possible that to 

such that the length of the interval 
7 is minimal, which may result in a 

symmetrical uncertainty interval. 
he coverage interval between 48 and 45  is 

3. 

….   48@-.AB·C  4C  

Output estimates 45 , 2 = 1. .3 in ascending 
cells represent the 95% coverage interval. 



Statistical tests using Monte Carlo 

Now the coverage interval has been established it is a 
straightforward procedure to compare the coverage 
interval with a series of preset tolerances. This is 
schematically shown in figure 4. In the upper and 
middle rows the coverage interval is within tolerance 
and the null hypothesis ,- is accepted. In the lower row 
the lower tolerance is in the coverage interval and ,- is 
rejected.  
Based on the acceptance of ,- the decision is made that 
the meter complies with the requirements. The use of a 
95% coverage interval means that this decision is made 
with a confidence level of at least 95%. By changing the 
length of the coverage interval the confidence level of 
the decision changes accordingly. 
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Figure 4: Tolerances (red lines) and coverage intervals 
around 47 (blue cells) while testing the null hypothesis ,-. 
In the upper and middle rows the coverage interval is 
within tolerance and ,- is accepted. In the lower row the 
lower tolerance is in the coverage interval and ,- is 
rejected. 
 
In the same way the alternative hypothesis ,� can be 
tested, i.e. the tolerances are exceeded. This process is 
schematically shown in figure 5. If the 95% coverage 
interval is entirely exceeding the upper tolerance (tol+), 
,� is accepted. If not ,� is rejected. 
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Figure 5: Tolerances (red lines) and coverage intervals 
around 47 (blue cells) while testing the alternative 
hypothesis ,�. In the upper and middle rows the coverage 
interval is within tolerance and ,� is accepted. In the 
lower row the lower tolerance is in the coverage interval 
and ,� is rejected. 

For quality control purposes we created the possibility 
of testing using additional criteria at the same time. 
 

  4�   48   	4	F 	  4 8@
-.AB·C
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tol- crit-     crit+ tol+ ,-
Figure 6: Statistical test with additional criteria crit- and 
crit+. In the above figure the result 47 meets both the 
tolerances tol- and tol+ and the additional criteria crit- 
and crit+ with 95% confidence. 
 
 
Monte Carlo software tool 

Thanks to the fact that PCs and laptops have become 
more and more powerful, Monte Carlo methods have 
become easily accessible for metrologists. The Monte 
Carlo software tool developed at NMi was initially an 
experiment to see whether the method would be 
feasible in the daily metrology practice. 
The design choices for the Monte Carlo Method (MCM) 
software were, from the outset, heavily biased towards 
the user. It was thought to be essential that the MCM 
could be used by metrological workers with varying 
skill levels. In effect widespread use of the MCM was 
deemed more important than speed, security or 
implementation details of varying nature. This has led 
us to develop the MCM tool entirely within Microsoft 
Excel.  
A user can run a Monte Carlo simulation in code without 
having to program a single line of code. This is enabled 
by a feature in VBA not commonly found in other 
programming languages. VBA allows code to modify 
itself at runtime. In this case a Set command runs a 
small piece of dedicated code that replaces the previous 
code line holding the old model formula with the new 
model formula. 
 
Validation 

Software validation is imperative when developing 
software tools. The validation of the Monte Carlo 
Simulator was performed by using a series of reference 
cases: 
• 10 examples of Monte Carlo analysis discussed in the 

GUM supplement [7]. These resulted in uncertainty 
values that were in mutual agreement within 1%. 

• Cases that have been analyzed analytically. These are 
the master meter method for calibrations using air 
for which the analytical uncertainty analysis was 
described in [12]. The second case was the bending 
of an aluminum bar due to a force exerted in the 
middle of the bar.  

• The last part was a comparison with NPL [14]. 
Despite entirely different Monte Carlo 
implementations, different random number 
generators and different seeding (i.e. the base 
number for the random number generator), 
uncertainty results were comparable within 0.5%. 

 
Verifications using Monte Carlo 

The calibration model was implemented in the Monte 
Carlo Simulator. Table I shows the input variables and 



their associated standard uncertainties. The 
uncertainties listed in the column sigma are the root 
sum square of the uncertainties from the traceability 
and the process conditions. For a rectangular 
distribution the lower and upper limits are given in 
columns a and b. The colum on the right hand side of 

Table I gives the uncertainty contribution of each input 
quantity to the uncertainty of the output estimate. The 
root sum square of all these uncertainties is equal to the 
overall uncertainty shown in Figure 7. The cells are 
colored: the higher the uncertainty contribution the 
darker the color. The most important uncertainty 

Table I: Input quantities (first 7 columns) and results (right most column) of Monte Carlo Simulation 

Quantity unit distribution mu  sigma a   b   process traceability 

 

I�J� 

p_11 bar Gaussian 59.875 0.00316 
  

0.001 0.003 
 

3.1E-05 

t_11 °C Gaussian 14.12 0.06185 
  

0.015 0.06 
 

1.8E-04 

N_s1 
 

Rectangular 14243 
 

14242 14244 
   

2.5E-05 

I_s1 m-3 Constant 206.5 
      

0 

tau_s1 s Gaussian 100.5035 0.00014 
  

0.0001 0.0001 
 

7.2E-07 

e_s1 
 

Gaussian 0.95% 0.00200 
   

0.20% 
 

1.0E-03 

p_12 bar Gaussian 59.884 0.00316 
  

0.001 0.003 
 

3.0E-05 

t_12 °C Gaussian 14.06 0.06083 
  

0.01 0.06 
 

1.7E-04 

N_s2 
 

Rectangular 13452 
 

13451 13453 
   

2.6E-05 

I_s2 m-3 Constant 206.5 
      

1.95E-18 

tau_s2 s Gaussian 100.5041 0.00014 
  

0.0001 0.0001 
 

6.8E-07 

e_s2 
 

Gaussian 0.69% 0.00200 
   

0.20% 
 

9.7E-04 

p_start bar Gaussian 59.875 0.00361 
  

0.002 0.003 
 

2.2E-09 

t_start °C Gaussian 14.06 0.06500 
  

0.025 0.06 
 

1.2E-08 

p_end bar Gaussian 59.865 0.00361 
  

0.002 0.003 
 

2.2E-09 

t_end °C Gaussian 14.12 0.06500 
  

0.025 0.06 
 

1.2E-08 

V m3 Gaussian 15.2 0.00000 
     

3.2E-10 

tau_V s Gaussian 100.5 0.00014 
  

0.0001 0.0001 
 

2.4E-14 

p_2 bar Gaussian 59.844 0.00316 
  

0.001 0.003 
 

6.1E-05 

t_2 °C Gaussian 14.08 0.06083 
  

0.01 0.06 
 

3.5E-04 

N_m 
 

Rectangular 53146 
 

53145 53147 
   

1.3E-05 

I_m m-3 Constant 400 
      

0 

tau_m s Gaussian 100.4992 0.00014 
  

0.0001 0.0001 
 

1.4E-06 

X1_C1 molfrac Gaussian 0.90327 0.00163 
  

0.00157 0.00045 
 

2.7E-08 

X2_C2 molfrac Gaussian 0.04791 0.00050 
  

0.00044 0.00024 
 

9.2E-08 

X3_C3 molfrac Gaussian 0.01297 0.00075 
  

0.00074 0.00006 
 

2.5E-07 

X4_iC4 molfrac Gaussian 0.00191 0.00011 
  

0.00011 0.00001 
 

5.5E-08 

X5_nC4 molfrac Gaussian 0.00276 0.00016 
  

0.00016 0.00002 
 

7.4E-08 

X6_iC5 molfrac Gaussian 0.00063 0.00004 
  

0.00004 0.00000 
 

2.4E-08 

X7_nC5 molfrac Gaussian 0.00054 0.00005 
  

0.00005 0.00000 
 

3.0E-08 

X8_C6 molfrac Gaussian 0.00067 0.00091 
  

0.00091 0.00000 
 

6.7E-07 

X9_C7 molfrac Constant 0 
      

0 

X10_C8 molfrac Constant 0 
      

0 

X11_C9 molfrac Constant 0 
      

0 

X12_C10 molfrac Constant 0 
      

0 

X13_CO2 molfrac Gaussian 0.01099 0.00018 
  

0.00017 0.00006 
 

1.6E-08 

X14_N2 molfrac Gaussian 0.01835 0.00030 
  

0.00029 0.00009 
 

4.2E-08 

X15_H2S molfrac Constant 0 
      

0 

X16_He molfrac Constant 0 
      

0 

X17_H2O molfrac Constant 0 
      

0 

X18_O2 molfrac Constant 0 
      

0 

X19_Ar molfrac Constant 0 
      

0 

X20_H2 molfrac Constant 0 
      

0 

X21_CO molfrac Constant 0 
      

0 

 



source is the traceability of the reference meters, which 
is fairly common in gas flow metrology.  
Figure 7 shows the dashboard of the Monte Carlo 
Simulator. The green cells are input to the simulator, the 
purple cells are the output results. The left red box 
contains the output estimate and the associated 
standard uncertainty, so the deviation of the meter 
under test $#=–0.18%. The expanded uncertainty is 
twice the standard uncertainty, i.e. 0.29%. The top right 
hand box contains in the green cells the criteria 
(±0.25%) and tolerances (±1%). The purple cells give 
the associated values of the CDF. For the lower criterion 
30.46% of the generated output values is less than 
-0.25%. The area between the lower and the upper 
criterion cover 69.36% of the observed values. The 
lower right hand box gives the result of the test based 
on the stated confidence level. The calibration result 

meets the tolerances with at least 95% confidence. The 
value of the confidence level can easily be changed 
without the necessity to re-run the simulation. For this 
case the tolerances are also met at a confidence level of 
99.7%. If a confidence level of less than 69.36% is 
specified the result meets the criteria and consequently 
also the tolerances. 
 
The Cumulative Distribution Function (CDF) and the 
probability density function are graphically depicted in 
Figure 8. The 95% coverage interval is [-0.46%; 
+0.11%]. The same values are obtained applying by 
analytical means assuming a normal distribution with a 
mean of -0.175% and a standard deviation of 0.146%. A 
logical result as most of the input distributions were 
assumed to be Gaussian. 
 
Conclusions 

The new point in this paper is that Monte Carlo methods 
can be applied directly to perform the conformity 
assessment. The reason is that the Monte Carlo process 
generates the cumulative distribution, with which the 
(legal) tolerances can be compared directly. The 
advantage of this process is that the type of distribution 
does not to be known and the (worst case) assumption 
of the distribution being Gaussian can be avoided. 
Consequently, for a Monte Carlo method the difference 
between tolerances and acceptance criteria is slightly 
smaller than for analytical methods. 
A test of the Monte Carlo method applied to a 
calibration of a high-pressure gasmeter meeting MID 
tolerances demonstrates the applicability of the method 
in practice. 
 
 

Figure 7: Dashboard of the Monte Carlo Simulator. The left red box contains the output estimate and the associated 
standard uncertainty. The top right hand box contains in the green cells the criteria and tolerances, the purple cells give 
the associated values of the CDF. The lower right hand box gives the result of the test based on the stated confidence level. 

 

Project information

Dept.

Environmental and other parameters
Quantity Unit Value Quantity Unit Value Quantity Unit Value 
Barometric pressure mbar 1015 Base pressure bar 1.01325 Gravitational acceleration m/s2 9.812184
Room temperature °C 15 Base temperature °C 0
Relative humidity % 45 Combustion temperature °C 25

Output request
Quantity Value Unit Quantity Value Statistical testing
Output quantity y y - Bins for histogram 101 Criterion lower tol. lower crit. upper crit. upper tol.
Number of Trials  100 000 Random seed - 654 321 Value -1.00% -0.25% 0.25% 1.00%
Coverage interval 95.0% Detailed output TRUE CDF 0.00% 30.46% 99.82% 100.00%

Output results for uncertainty
Quantity y u(y) (k=1) CI1 95.0% CI2 95.0% Min Q1 Median Q3 Max Kolmogorov Smirnov
Unit - - - - - - - - - D value P Value
Value -0.175% 0.146% -0.461% 0.111% -0.778% -0.274% -0.175% -0.077% 0.474% 0.0015 0.9738
Nominal -0.461% 0.111% symmetric
Relative -0.462% 0.111% Gaussian Conf. level 95.0% Result meets tolerances

Model equation Number of ReF Number of MuT Number of VoL
AGA8 2 0.01 1

Model description
Project/Engineer

Problem description
Client

High pressure gas flow calibration using full gas composition and AGA-8 Equation of State
NMi Euroloop

MetrologyJos van der Grinten Tag number

v 2.00

© NMi 2013

woensdag 17 juli 2013
Instationary integral mass balance

Flomeko 2013

Flomeko
41472814813784

Reference
Date of analysis
Output file

Monte Carlo Simulation tool

Validated software for internal use in NMi Euroloop
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Model description: Instationary integral mass balance

Output file: Flomeko

Tag number: 41472351849619

Number of runs = 100000

CDF norm

CDF

CI short 95.0%

CI short 95.0%

CI norm 95.0%

CI norm 95.0%
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Figure 8:  CDF and PDF as a function of the output 
estimate. The left vertical axis applies to the CDF, the 
right vertical axis to the PDF. The 95% coverage interval 
is marked by two vertical lines.  



Abbreviations and symbols 

CDF Cumulative Distribution Function or Distribution 
Function 

MuT meter under test 
PDF Probability Density Function 
tol+ upper tolerance 
tol- lower tolerance 
H- null hypothesis 
H� alternative hypothesis 
 
symbols 
$ deviation [%] 
" impulse factor [1/m³] 
� number of pulses counted during a calibration 

run [-] 
� normal vector [-] 
; probability [-] 
� absolute pressure [bar] 
� volume flowrate [m³/h] 
� Celsius temperature  [°C] 
� volume between master meters and MuT [m³] 
L fluid velocity [m/s] 
6 output quantity 
4 output estimate 
47 average of output estimates	
 
� mass density  [kg/m³] 
  time interval corresponding to an integer number 

of pulses [s] 
 
Indices 
1 at the position of the master meter 
2 at the position of the MuT 
. rank number of the master meter 
2 rank number of output estimates y 
3 number of trials in the Monte Carlo simulation 
O indicated by the MuT 
� number of parallel master meters 
9 rank number of the start of the coverage interval 
� at the volume between masters and MuT 
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