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Abstrac t  –  The paper  deals wi th the no ise character iza t ion under  the assumption of  

a  he teroscedast ic  signal –dependent no ise model  in the context  o f medical  imaging.  

In par t icular ,  in  this kind of applica t ion,  a  sophis t icated noise var iance es t imat ion 

algori thm is appl ied us ing robust  es t imators and nonlinear  regress ions.  A direct  

rela t ion be tween no ise var iance  and pixe l  intensi ty values i s  obtained and used 

wi thin a  mul t ireso lut ion denoising algor i thm,  performed by Wavelet  Thresholding 

(WT).  We wi l l  provide result s  o f the no ise es t imation,  by app lying the  proposed  

method to  mammographic images.  

 

I. Introduction 

 

In the last decades Screen Film Mammography (SFM) have represented the leading technique for the 

early detection of breast cancer in women. Only in the last few years Digital Mammography (DM) 

have been applied to screening and diagnosis. The two methods have many differences both in 

technologies and in performance [1,2].  

In SFM a phosphor screen in a light–tight cassette absorbs a fraction (typically 60 – 80%), called 

quantum efficiency of the incident X–rays. The phosphor transforms X–rays into light and a sheet of 

photographic film is directly impressed by it. Finally, by chemical processing the latent photographic 

film is converted into a pattern of optical density on the film which can be seen by transillumination. In 

order to produce a digitized version of the image a high resolution scanner device is used.  

In DM the image is acquired by a detector, which converts X–rays into an electric signal and then it is 

digitized into 2
N
 intensity levels (typically N equals 12 or 16). The digital image has also a spatial 

resolution depending on the device. 

Obviously, high quality images are needed in order to accurately detect subtle lesions (e.g., 

microcalcifications or low contrast massive lesions) in the breast. Image quality is evaluated in terms of 

spatial resolution, contrast, absence of artifacts, and noise.  

 

 Spatial resolution is due to digitalization process. Typically, mammographic images with good 

quality have a spatial resolution in range [40–50] μm. This high resolution is needed to distinguish 

pathological structures such as microcalcifications (about 0.1 – 1 mm).  

 Contrast is essentially due to relative differences in absorption characteristics among normal tissue 

and pathological lesions; obviously density and thickness of the structures of interest are crucial. 

Consequently, in order to assist radiologists in the detection of cancer signs contrast enhancement 

is always performed by a postprocessing procedure on the digitized image. Contrast and spatial 

resolution are also influenced by motion blurring, caused by physiological motions during the 

exposure (it takes about 4 s), geometric and receptor blurring, breast compression, etc. All these 

effects should be treated as systematic error contributions affecting the quality of mammographic 

images. Recently, we consider these effects in the uncertainty evaluation and propagation through 

the formation, acquisition and elaboration phases [3].  

 Artifacts are unwanted effects that are unrelated to breast structures and that appear in the 

formation and digitalization process. They are typically due to dust, fingerprints, overexposure, x–

ray sources, compression devices, breast support tables, darkrooms and are always corrected in any 

quality control program for mammography so that we can neglect them in this work. 

 Noise is the leading effect that cannot be neglect since it impairs the detection of lesions especially 

when contrast improvement is needed in order to emphasize small cancer signs such as 

microcalcifications. Radiographic noise or mottle is any unwanted random variation of the optical 

density on a radiography. In SFM major sources of radiographic noise include quantum noise, 
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screen structure, film grain, film processing artifacts, X–ray to light conversions. In particular, 

radiation dose strongly influences noise contribution. When fewer X–rays are used, the fluctuation 

in the image increases and the image appears noisier. Other noise sources are quantization noise 

related to bins used in the digitalization process, film granularity, and the statistical fluctuation of 

light produced in the screen when an X–ray quantum is absorbed. 

 

Noise characterization, in terms of noise variance, should be performed in order to reduce noise amount 

in mammographic images so as to optimize contrast enhancement performance. In particular,  in the 

last ten years multiresolution analysis by wavelet transform has represented the leading approach for 

medical images denoising and enhancement. In fact, a multiscale approach allows us to separate and 

selectively process objects according to their size. In mammographic images,  cancer signs are 

represented by microcalcifications (in a early stage) with mean diameter in [0.1–1] mm and massive 

lesions with a mean diameter in the range [0.5–40] mm. Other structures, related to pectoral muscle, 

glandular tissue, fatty tissue, or other parenchyma’s structures, can be also visible. 

In this paper we consider the following steps: 

 

 noise modelling and characterization; 

 denoising by wavelet thresholding.  

 

In particular, we consider a noise model given by 

 

     

 

where  is the noisy image,  is the noise–free image,  is a normal random 

process with zero mean and unitary variance,  is the standard deviation of the noisy 

contribution . Note that we suppose an heteroscedastic noise model that consists in assuming an 

intensity–dependent noise standard deviation. So, in the following section we will describe an 

algorithm for the estimation of . Then, we will provide a method to embed this estimation 

into multiscale denoising.  

  

II. Signal–dependent noise characterization 

 

The main problem we address is noise estimation in order to provide its standard deviation. We expect 

that radiographic noise in this case includes very different noise contributions so that we do not expect 

a unified model for the standard deviation.  

 

 

 

Figure 1. The noise variance estimation algorithm. 
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The main steps of the estimation algorithm can be summarized as follows. 

 

(a) Extract  low–frequency components from the image containing homogeneous regions. This step is 

performed by applying a low pass gaussian filter to the original noisy image obtaining a smoothed 

image that we denote with . 

(b) Evaluate the high frequency components of the image by the subtraction of the smoothed image to 

the original one. Obviously this image contains both small details, boundaries, and noise. We will 

denote this image with  

(c) Eliminate edges by applying a robust edge detector to the original image. This further step is 

needed in order to eliminate edges from the estimation procedure, that would decrease noise 

variance estimation accuracy. Then, by thresholding we obtain a binary mask of principal edges 

that we denote with . 

(d) Build an histogram of  relating each bin to the intensity of image  considering pixels at the 

same position in the two images.  

(e) Evaluate the standard deviation of each bin by a Median Absolute Deviation (MAD) estimator. 

(f) Perform a robust regression analysis by Cubic Smoothing Spline in order to fit the data extracted at 

step (e). 

 

The algorithm has been applied on mammographic images taken from database DDSM [4] and below 

we show four different images as an example (Fig. 2). The results of the estimation applied to these 

images are shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Four mammographic images taken from DDSM. 

 

Figure 3. Estimated noise variance vs. pixel intensity for the above images: data and regression curves. 
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Simulation results show that there is a strong dependence between the noise variance and pixel 

intensity values. Anyway, this dependency is far to be modeled by a known unified behavior. In 

particular, note that for very low intensity values (recall that dark regions correspond to high optical 

densities) noise variance is very high and evidently follows a very different signal–dependency. In 

contrast, at medium and high pixel intensity values noise variance exhibits a strong signal–dependence 

with very lower values. Preliminary remarks assume that there is an additional spatial correlation that 

noise keeps in dark regions probably depending on the digitalization process. This noise contribution 

however, is confined to dark regions and vanishes in the regions related to breast tissue. Consequently, 

our intent is to finely model noise variance for medium and high pixel intensity values, neglecting the 

behavior at low values. This result is used in a sophisticated denoising procedure performed by 

multiresolution analysis within a wavelet framework for medical image enhancement [7].  

 

III. Denoising by wavelet thresholding 

 

Since the presence of noise could disturb the processing in wavelet domain and corrupt the 

enhancement performance, a preliminary step is image denoising. Fig. 4 shows an example of contrast 

enhancement by Adaptive Contrast Equalization (ACE) without denoising. Note that noise is 

emphasized as well as microcalcifications and other structures so that image quality is worse. 

 

 

Figure 4. Effect of contrast enhancement by ACE without denoising. 

 

However, conventional filtering techniques cannot be applied in the context of medical imaging 

because they produce edge blurring and loss of details. In order to achieve edge preserving filtering we 

apply the well known wavelet shrinkage denoising [3] on the wavelet coefficients at each level. Firstly, 

the original image is decomposed by suitable filters (see [4]) so that details and low frequency 

information are mapped into different domains. Then, a suitable thresholding operator is applied only 

on detail coefficients, since low frequency coefficients are noise–free. 

The key issue is the optimal selection of the threshold Tn. It is well known that Tn should be related to 

noise power for an optimal denoising but in our case the setting of Tn is difficult owing to the 

heteroscedasticity. Preliminary results for threshold selection under restrictive hypotheses can be found 

in [10]. The generalization under the heteroscedasticity assumption is under investigation by the 

authors.  

 

In order to evaluate denoising performance we extract a portion with uniform luminance from the 

original ROI (Fig. 4 (left))  and from the denoised version. The two regions are shown in Fig. 5. 

 

 

Figure 5. Uniform regions before (left) and after denoising (right).  

 

Evaluating in each image the variance we obtain  (before denoising) and  

 (after denoising). Then, by subtracting these two values we obtain the noise variance in 

Uniform region without denoising Uniform region after denoising
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that region 2 56.15 10NOISE . Comparing this value with that computed by the regression curve we 

obtain an estimated value 2 5ˆ 6.31 10NOISE , thus proving the effectiveness of both noise estimation 

and denoising. 

The whole denoising and contrast enhancement algorithm is represented by the block diagram shown 

in Fig. 6 only for two decomposition levels (three are actually used).  

Our algorithm performs a very effective contrast enhancement specific for microcalcifications that is 

strongly influenced by the denoising step. As an example in Fig. 7 we also compare the final result of 

the algorithm shown in Fig. 6 with the same procedure inhibiting denoising. Note that, in this way 

noise contribution is emphasized as well as microcalcifications, thus altering the image and falsifying 

radiologist diagnosis capability. 

 

 
 

 

Figure 6. Effect of contrast enhancement by ACE without denoising. 

 

 

 

 

 

 

 

 

 

Figure 7. Effect of contrast enhancement by ACE without denoising. 
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IV. Conclusions 

 

The paper presents a novel method to estimate noise variance under the assumption of a heteroscedastic 

signal–dependent noise model. This procedure is used for denoising and contrast improvement of 

mammographic images in which breast cancer signs are very subtle due to low contrast and very small 

size.  
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