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Abstract- In the last decade considerable research efforts have been spent to seek for systematic 
approaches to Fault Diagnosis (FD) in dynamical systems The problem of fault detection  consists in 
detecting faults in a physical system by monitoring its inputs and outputs .Recently, the research has 
focused on non-linear systems FDI. Traditionally, the FD problem for non-linear dynamic systems has 
been approached in two steps. Firstly, the models linearized at an operating point, and then robust 
techniques are applied to generate residuals. This method only works well when the linearization does 
not cause a large mismatch between linear and non-linear models and the system operates close to the 
operating point specified. To deal with systems with high non-linearity and wide operation range, the 
FD problem has to be tackled directly using non-linear techniques. In the last decade considerable 
research efforts have been spent to seek for systematic approaches to Fault Diagnosis in dynamical 
systems..  
 

I. Introduction 
 
The main goal of an FD system is the monitoring of the plant during its normal working conditions so 
as to detect the occurrence of failures (fault detection), recognize the location (fault isolation) and the 
time evolution (fault identification) of the failures. In the model-based approach to FD, this goal is 
achieved by comparing the actual system's behaviour with the corresponding expected behaviour 
derived via its mathematical model. Usually, the output of a fault detection algorithm is a set of 
variables sensitive to the occurrence of a failure (residuals). Namely, when a failure occurs, a fault 
signature affects the residuals. Then, the information from the signatures is processed to identify the 
size and the location of the fault. As for the case of nonlinear dynamical systems the fault detection 
methods can be roughly regrouped in three main classes: observer-based approaches, parameter 
estimation techniques and algorithms based on learning methodologies Recently, soft computing 
methods, integrating quantitative and qualitative modelling information, have been developed to 
improve FD reasoning capabilities. In order to develop better - fast, accurate and robust - process 
control, model-based modern control methods and efficient adaptive and learning techniques are 
required. . The adoption of effective fault diagnosis techniques is becoming critical to ensure higher 
levels of safety and reliability in automated plants and autonomous systems. Process control is an 
efficient means of improving the operation of a process, the productivity of the plant, and the quality of 
the products. In process engineering, even a small improvement in the operation of the process can 
have great economic and environmental influences. Control problems in the industry are dominated by 
nonlinear and time-varying behaviour, many sensors that measure all kinds of variables, many loops 
and interaction among the control loops. The extraction of (fuzzy) information out of raw data is very 
important and contains saving potential for industrial applications and time. Fuzzy control can be based 
on human experience and can mimic actions of human operators. 
 During recent years, the developments in these fields have introduced new tools for use in control 
engineering: neuro-fuzzy systems, guided random search techniques, predictive control, model 
reference control, etc. In process engineering, these new tools have found applications in non-linear 
process modelling and control, plant optimisation, monitoring, scheduling, etc. The application area of 
control engineering methods can be extended also to systems beyond the realm of traditional process 
engineering. Modern techniques for control system design, including robust design for stochastic and 



nonlinear systems as well as intelligent control, are expected to lead to an increase in quality and 
productivity of manufacturing processes. The manufacturing and industrial sectors of economy are 
increasingly called to produce at higher throughput and better quality while operating their processes at 
maximum yield. As manufacturing facilities become more complex and highly sophisticated, the 
quality of the production phase has become more crucial. The manufacture of such typical products as 
textiles and fibres, aircraft, automobiles, appliances, etc, involves a large number of complex processes 
most of which are characterized by highly nonlinear dynamics coupling a variety of physical 
phenomena in the temporal and spatial domains. It is not surprising, therefore, that these processes are 
not well understood and their operation is “tuned” by experience rather than through the application of 
scientific principles. Machine breakdowns are common limiting uptime in critical situations. Failure 
conditions are difficult and, in certain cases, almost impossible to identify and localize in a timely 
manner. Scheduled maintenance practices tend to reduce machine lifetime and increase downtime, 
resulting in loss of productivity. Recent advances in instrumentation, telecommunications and 
computing are making available to manufacturing company’s new sensors and sensing strategies, plant-
wide networking and information technologies that are assisting to improve substantially the 
production cycle. 
In many practical situations, uncertainty in the process can affect the performance of the system 
significantly no matter how the uncertainty is described (vagueness or ambiguity). This realization 
provides the motivation for a possible fuzzy logic approach to FDI. This has the ability to directly 
describe the potential failure modes in the parameters while handling a class of nonlinear systems. 
 

II. The Diagnostic System Architecture    
 
Components, machines and processes fail in varying ways depending upon their constituent materials, 
operating conditions, etc. Failure modes are typically monitored by a sensor suite which is intended, for 
failure analysis purpose, to capture those failure symptoms that are characteristics of a particular failure 
mode. Let’s take for example the case of a typical industrial process: failures (sensors, actuators, 
components). Typical failure modes may include leaks, sensor failures, corrosion, debris, etc. which is 
characteristic of a process failures as well as a variety of vibration induced faults that are affecting 
mechanical and electro-mechanical process elements. The low-bandwidth process faults such as 
temperature, pressure, leaks, etc may be treated with a fuzzy rule base set as an expert system while 
high bandwidth (see Figure 1) faults such as vibrations, current spikes, etc are better diagnosed via a 
feature extractor/neural network classifier topology.  

The diagnostic module 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 The two-prong approach of the diagnostic module 
 

The preprocessing and feature extraction unit takes raw sampled data from a plant and 
converts it to a form suitable for the fuzzy logic. It incorporates filtering of noise from raw data and 
extraction of features from the filtered data. Feature extraction intends to extricate the most important 
characteristics from the filtered data such as slopes, levels relevant frequencies, etc (see Figure 2.) 

The basic diagnostic architecture is generic and applicable to a wide variety of industrial 
processes. A fuzzy logic approach is used to determine if a failure (or impending failure) has occurred 
and to assign a degree of certainty to this declaration. 
 



 
 
 

Figure 2. Fuzzy diagnostic system layout with feature extraction 
 
Figure 3 depicts the essential elements of the diagnostic process. Process faults may be treated with a 
fuzzy rule base set as an expert system while high bandwidth faults are better diagnosed via a feature 
extractor/neural network classifier topology. This approach is adopted below in addressing typical 
machinery failures. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 The fuzzy logic and evidence theory approach 
 

III.Fuzzy Diagnostic System 
 

The fuzzy diagnostic system takes features as inputs and then outputs any indications that a failure 
mode may have occurred in the plant. The fuzzy logic system structure is composed of four blocks: 
fuzzification, the fuzzy inference engine, the fuzzy rule base, and defuzzification, as shown in Figure 4: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The fuzzy logic diagnostic system 
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The fuzzification block converts features to degrees of membership in a linguistic label set such as low, 
high, etc. the fuzzy rule base is constructed from symptoms that indicate a potential failure mode. 
Figure 5 describe two typical rules. An example of this kind of rules could be: 
 
If the temperature is low in Recipient 1 and the pressure is low then the failure mode is Recipient 1 
heating element is damaged. 
 
If the slope of Recipient’s water level is negative low and the slope of Recipient’s pressure is negative 
low then the failure mode is Recipient 1 leaking. 

 
 

Figure 5. A graphical representation of a fuzzy rulebase 
 

The fuzzy rule base can be developed directly from user experience, simulated models, or 
experimental data. Fuzzy outputs are aggregated (maximum method) through the fuzzy inference 
engine to determine a degree of fulfilment for each rule corresponding to each failure mode. The last 
step defuzzifies the resulting output, using the centroid method, to a number between 0 and 100 (figure 
6). 

 
 
 
 

Figure 6 Graphical Inference and Defuzzification 
 
This is finally compared to a threshold to determine whether or not a failure mode should be reported. 
 

IV.High band failure Detection and Identification 
 
   The Wavelet Neural Network (WNN) belongs to a new class of neural networks with such unique 
capabilities as multi-resolution and localization in addressing classification problems. For fault 
diagnosis, the WNN serves as a classifier so as to classify the occurring faults (see Figure 7). 
 



 

 
 

Figure 7 Classification using the wavelet neural network 
 

Critical process variables are monitored via appropriate sensors. The data obtained from the 
measurements are processed and features are extracted. The latter are organized into a feature vector, 
which is fed into the WNN. Then, the WNN carries out the fault diagnosis task. In most cases, the 
direct output of the WNN must be decoded in order to produce a feasible format for display or action. 

For example, the WNN can be used to perform the diagnosis of a bearing failure typically 
found on races, rolling balls and lubrication materials. Here, for simplicity, the focus is placed on the 
diagnosis of whether the bearing is normal or defective. Through vibration measurements, a number of 
vibration signals for a bearing are collected and the peaks of the signal amplitude chosen as the 
features. Such other quantities as the standard deviation, wavelet, maps, temperature, humidity, speed, 
mass, etc. can be selected as candidate features. From the vibration signals, a training data set is 
obtained, which is then used to train the WNN. 

Once trained, the WNN can be employed to perform the fault diagnosis. Signals a from a 
normal bearing and a defective one and their spectrum domain are shown in Figure 8. 
 

 
Signal from a good bearing 

 



 
 

Signal from a defective bearing 
 

 
 

Spectrum domain for a good bearing 
 

 
Spectrum domain for a defective bearing 

 
Figure 8 Signals and spectrum domain from a normal and a defective bearing 

 
 
 
 
 



 
V. Conclusions 

 
This paper proposes a methodology to monitor and diagnose machine faults in complex 

industrial processes. This kind of analyze could be applied to diverse industrial plants which can 
operate critical processes and may require continuous monitoring and maintenance procedures. We 
provide a brief discussion about fault detection system for industrial processes and we think that neuro-
fuzzy system can be another efficient mathematical tool to deal with the study of failure occurrence 
risk. For the sake of reducing this risk, such an accidents-modelling can help in singling out the 
corrective actions. 
A dual approach is pursued: High-bandwidth fault symptomatic evidence, such as vibrations, current 
spikes, etc., are treated via a feature extractor/neural network classifier construct while low-bandwidth 
phenomena, such as temperature, pressure, corrosion, leaks, etc., are better diagnosed with a fuzzy rule 
base set as an expert system.  

Neuro-fuzzy techniques are shown to be applicable to the industrial process fault diagnosis 
problem. The diagnostic models developed are capable of providing diagnosis of single or multiple 
faults based on noisy data. The main motivation for applying a neuro-fuzzy computing approach is that 
it combines the computational merits of neural networks with the representational power and 
transparency of fuzzy inference systems. 
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