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Abstract  - A heuristic procedure of classification, the quantum-inspired classifier (QIC), exploiting 
search space exploration and resource exploitation of quantum computing on a software basis is 
proposed. The application to the problem of speed sequence classification for vehicle emission factor 
determination based on drive styles is shown. Experimental results are discussed by showing the QIC 
capability of converging better and faster than classical evolutionary algorithms.  
 
 

I. Introduction 
 
In automotive industry, interest in vehicle pollution has constantly grown in order to reduce pollutant 
emissions without decreasing vehicle performance. Several studies showed that, in on-road tests, 
emissions are influenced strongly by driving behavior, and, in laboratory tests, by the choice of 
reference driving-cycles [1]-[2]. In Fig. 1, a measurement procedure for estimating emissions starting 
from vehicle speed acquisition data and reference driving styles is shown [3]. After speed acquisition, 
data are divided in suitable sequences (SEQs). The resulting SEQs are segmented and classified by 
means of suitably extracted characteristic features, as well as of class limits predefined through a 
corresponding generator. From such classified SEQs and reference styles obtained by a related 
generator, the current driving style is obtained. Finally, the emission amount is estimated. 
In such a measurement procedure, one of most difficult problem is the sequence classification 
(highlighting circle in Fig. 1). With this aim, different techniques, statistical or heuristics, have been 
developed [3]. Among heuristic techniques, evolutionary ones showed interesting performance [4]. A 
population of possible solutions evolves as biologic individuals in order to achieve the optimization of 
an objective function (fitness). After genetic algorithms (GAs), different evolutionary techniques were 
proposed in order to face their intrinsic resource waste [5]-[13]. In particular, cultural algorithms 
demonstrated significant efficiency and effectiveness, though the difficulty in tuning their strongly 
driven evolution leads sometime to premature convergence [14]. Recently, quantum computing has 
been proposed as a new concept of evolutionary technique basically inspired by quantum physics 

principles [15]. For the lack of quantum 
hardware, classical evolutionary algorithms 
(such as GAs) have been exploited in order to 
derive hybrids algorithms, called quantum-
inspired evolutionary algorithms (QIEAs) [16]. 
They proved to have a satisfying trade-off 
between research space exploration and 
resource exploitation, also in problems where 
solutions lies in continuous search spaces, such 
as in the case of drive sequence classification. 
In this paper, the problem of driving sequence 
classification for vehicle emission quantities 
measurement is faced by a heuristic procedure 
based on quantum-inspired algorithms, the 
quantum-inspired classifier (QIC). 
Experimental results, related to the 
implementation of the proposed QIC to 
automatic classification of driven sequences, are 
discussed. 
 
 

 
Fig. 1 – Vehicle emission measurement based on  

speed sequence and drive style classification.  
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II. The proposed approach 
 
In the following, (i) the QIC basic ideas, (ii) the software quantum observation, (iii) the quantum-
inspired classifier, and (iv) the driving sequence classifier are illustrated.  
 
A: QIC Basic Ideas 
In the software simulation of a quantum algorithm without quantum hardware, a quantum pulse (q-bit) 
is employed [17]. The q-bit is described by two parameters: the center ρ, and the width σ (Fig. 2). 
While a classical genetic chromosome represents a deterministic point in the search space, the q-bit 
represents a portion of the search space, expressed by its width σ, and its center ρ, where the solution 
can be found within a certain approximation or likelihood.   
On the basis of such q-bits, a quantum population is built. Owing to the lack of hardware, the current 
quantum population is assessed by means of a traditional evolutionary algorithm, namely a GA. This 
realizes a twofold levels search: on a rough level, the quantum population evolves according to its 
exploitation power; on a fine level, inside the local region found by the quantum-inspired search, a 
genetic population evolves according to its exploration power. 
Moreover, the search approximation is updated dynamically at each quantum evolution cycle in order 
to optimize solution space exploration and resource exploitation. With this aim, quantum pulses are 
modulated according to the current population fitness: σ is updated in order to enlarge or reduce the 
search space, in accordance if the current fitness is higher or lower than the previous one. In this way, 
the dimension of the current search space is updated dynamically according to the proximity to the 
solution, assessed in terms of current value of fitness. 
 
B. Software Quantum Observation 
In a quantum computer, the act of observing a quantum state 
turns it to collapse in a single state. In the QIC, for the 
software implementation of a quantum observation, from a 
quantum population a genetic population is generated by 
following a probability-based approach (Fig. 3). For the 
homologue q-bits of the population, the σ are summed: in 
this way,   a cumulative distribution function (CDF) of 
probability of finding a coordinate of the solution is 
determined. Then, the corresponding genetic chromosome is 
obtained by generating a random number, between 0 and 1, 
and determining the corresponding value of ρ. This 
represents a random choice of a sample in the quantum 
space under analysis, called quantum observation.  
At a procedural level: 
a) first, homologue chromosomes are selected for the 

entire quantum population (P1 and P2 in Fig. 3a);  
b) theirs pulses are summed up to realize the correspondent 

PDF (Fig. 3b). PDF shape shows the spatial distribution 
of quantum chromosomes; i.e. for quantum pulses 
thicken around a point, the correspondent PDF shows a 
peek in its shape;  

c) this PDF is integrated to obtain a CDF (Fig. 3c) in order 
to compute the genetic chromosomes: a random number 
y is generated (y1 in Fig. 3c), between 0 and 1, to 
random select a classical chromosome in the complete 
variation range of ρ;  

d) and finally the corresponding value on the CDF x axis 
(x1 in Fig. 3d) is chosen as the value for the classic 
chromosome. 

 
C. The Quantum-Inspired Classifier 
In Fig. 4, the structure of the QIC is represented 
schematically. Initially, a random quantum population is 
generated; then, a classical population is derived through the 
abovementioned operations of quantum observation. This 
population evolves by means of traditional evolutionary 

 
Fig. 2 – Pulse representing a quantum 

chromosome (q-bit). 
 
 

 
 

Fig. 3 – QIC procedure of software 
quantum observation. 
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functions (such as crossover, mutation, 
and so on). The classical evolution 
gives rises to a new population, where 
individuals are classified according to 
their fitness. If the best fitness exceed 
the fitness limit imposed, the QIC 
reaches the convergence and ends with 
the corresponding individual as the 
problem solution. Conversely, a new 
quantum population is rebuilt starting 
from the current classical one: (i) ρ is 
obtained from the classical 
chromosome value; (ii) if the mean 
fitness of classical population shows 
some improvement after last 
evolutionary cycle, the new width pulse 
σ is reduced; otherwise, σ is enlarged. 
After the realization of the new quantum population, a new observation is done, such as described 
previously, in order to obtain the new classical population to be evolved until a final convergence. 
 
 
C. Driving Sequence Classifier 
The proposed QIC has been applied to the classification of the drive SEQs collected in the framework 
of the ATENA Project [3]. According to the procedure set up by the Istituto Motori of the Italian 
National Research Council for measuring emission factors through a statistical approach [3], each SEQ 
was segmented in the 14 features described in Tab. 1. Features belonging to the same class were tested 
according to the Pearson analysis of distribution and they resulted to be modeled mainly by a Beta 
distribution [14], with α and β characteristic parameters Then, a 3-D matrix (3DM) was defined (Fig. 
5), with the feature Fej in the j-th row and the class Ci in the i-th column. The cell cij of 3DM contains 
the two Beta distribution parameters (α, β), representing the likelihood Fei for a SEQ feature to belong 
to a class Cj. QIC is employed to optimize 3DM in order to achieve the best classification for SEQs 
under analysis. The best 3DM is the matrix that, for an unknown input SEQ, gives its right 
classification according to the reference SEQs classification described in the framework of ATENA 
Project. Moreover, the likelihood of the SEQ to belong of the class is also provided. For a feature array 
of an unknown SEQ, a corresponding 2D probability matrix of the Beta distribution of belonging to 
classes is obtained from the matrix 3DM (Fig. 6). Then, by computing the averages on the columns 
from the 2D matrix, a row array is obtained, expressing for the unknown SEQ the probability of 
belonging to classes. Finally, SEQ belongs to the class with the maximum likelihood. The better 3DM 
is the matrix that, for a given set of SEQs with theirs classifications, gives rise to selective 2D matrix, 
such as depicted in Fig. 6: only a peak for the expected class for the SEQ under analysis. 

 
 

Tab. 1 – SEQ features according to CNR Istituto Motori classification [3]. 
Variable Description Variable Description 

V_mean Mean speed  Acc1t Time with acceleration > 0.15 
m/s2 

V_a 
Sum of speed samples 

multiplied by acceleration 
samples 

Paccel1 Time percentage with 
acceleration < -1.4 m/s2 

V_max/t Ratio between the maximum 
speed and the driving time Paccel2 Time percentage with 

acceleration є[-1.4;-0.6] m/s2 

V20 Time percentage with vehicle 
speed < 20 km/h Paccel3 Time percentage with 

acceleration є[-0.6;-0.2] m/s2 

V30 Time percentage with vehicle 
speed є[20, 30] km/h Paccel4 Time percentage with 

acceleration є[-0.2;0.2] m/s2 

V40 Time percentage with vehicle 
speed є[30, 40] km/h Paccel5 Time percentage with 

acceleration є[0.2;0.6] m/s2 

T_sum Duration of the SEQ Paccel6 Time percentage with 
acceleration є[0.6;1.4] m/s2 

 

 
 

Fig. 4 – QIEA evolution based on classical population. 
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The driving sequence classifier operates according to the following procedure:  
• Firstly, a 3DM is randomly realized.  
• Then, for each SEQ of the input set with its class, a quantum population is realized. The generic 

quantum individual is composed by 14 chromosomes, as the number of SEQ features. The i-th 
chromosome is composed by the couple (α,β) representing the Beta distribution associated to the i-
th SEQ feature for these class. Each Beta distribution parameter is composed by two terms, ρ and 
σ, such as previously described.  

• From this quantum population, a classical population evolving as a genetic algorithm is realized. 
Classical individuals represents possibly problem solutions, particularly they represents a possibly 
3DM column related to the class of the SEQ under analysis. 

• Best individual is chosen according to the best classification for the input SEQ.  
• The procedure continues until all SEQs are analyzed and the best 3DM is obtained. 
 

 
III. Experimental results 

 
A set of thousands classified SEQs experimentally acquired in the framework of the ATENA Project 
were employed [3]. QIC results were compared with solutions proposed by a traditional reference GA. 
The algorithm configurations for the comparison tests are reported in Tab.2. GA and QIC are compared 
on the same basis by selecting the same number of classical individuals, and, above all, the same 
number of fitness evaluations (i.e number of times that an individual is evaluated by means of the 
fitness obtained as the product between the number of individuals and the number of cycles).  

 

 
Fig. 5 – 3D matrix 3DM. 

 
 

Fig. 6 – SEQ classification likelihood via the 3D Matrix.  
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Tab. 2 – Algorithms configuration. 
Algorithm QIC GA 

Quantum Genetic Number of evolutionary 
cycles 30 20 600 

Number of fitness 
evaluations  60000 60000 

Crossover rate 0.7 0.7 
Mutation rate 0.3 0.3 

Elite count 1 1 
 

Tab. 3 – Effectiveness and efficiency in terms of percentage of classified SEQs. 
 QIC GA 
 Cycles Fitness (%) Cycles Fitness (%) 

Quantum  Genetic Tot. Effectiveness 
(same cycles number) 30 20 600 81.36 % 600 10.83 % 

Quantum Genetic Tot. Efficiency 
(same fitness) 25 20 500 81.36 % NaN 81.36 % 

 
Others parameters significant for the comparison represented in Tab. 2 are: (i) crossover rate, as the 
percentage of individuals that can be used to cross theirs genomes; (ii) mutation rate, as the percentage 
of individuals that can be mutated; and (iii) elite count, as the number of individuals that can pass from 
a generation to the following without any change in its genome.  
Performance, represented with 3DM final fitness, are analyzed as percentage of correctly classified 
SEQs. In Tab. 3, experimental results show interesting QIC performance versus GA, represented as 
algorithms effectiveness and efficiency, according to literature of evolutionary algorithms [18].  
Effectiveness is a measure of the quality solution within a given computational limit, 600 total 
evolutionary cycles in this case. The number of QIC total evolutionary cycles are calculated by 
multiplying internal cycles – cycles done by the internal GA – and external cycles – cycles done by the 
means of the quantum conversion. At the end of the same number of cycles, QIEA shows better results 
than GA, with a difference of SEQs classified of + 70.53 %. 
Efficiency is a measure of the amount of computing needed to achieve a satisfactory solution set at  
81.36% in this case. After a large amount of evolutionary cycles, GA was not able to reach the defined 
target. 

 
 

III. Conclusions 
 
A quantum-inspired classifier for the classification of driving sequences in vehicle emission factor 
measurement was proposed. Evolutionary mechanisms are modulated by principles of quantum physics 
in order to explore solutions in the search space simultaneously with theirs neighborhoods in a 
probabilistic way instead of deterministic classical way, such as employed in genetic algorithms. The 
classification of driving sequences acquired in the framework of the ATENA Project [3] showed 
interesting performance of QIC compared with classical genetic algorithm results, in terms of 
effectiveness and efficiency.  
Nevertheless, fitness values, as classified SEQs percentage, as well as time computation, must to be 
improved and future works will be focused on code optimization. 
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