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Abstract

The results of the calibration of load cells (force transducers) according to
 ISO 376-1999 are described in table of values where force F (kN) is a function of electric
signal R (mV/V) and by analytical approximation of the calibration curve.

The analytical approximation is usually expressed by polynom of nd2 or rd3 degree.
The measurement of force in the calibration of testing machines by means of digital unit
device DMP-40 (HBM) suppose application of linear interpolation between two adjacent
values of signal R.

By means of mathematical calculations it is theoretically proven in which cases the
linear interpolation is undesirable and leads to additional interpolation error, and increasing of
the value of uncertainty measurement in accordance.

A few studies and experiments of the issue confirm the theoretical conclusions: in
some cases minimizing interpolation error and uncertainty measurement in measuring force F
as a function of reading the signal R, can be achieved by approximation polynom instead of
linear interpolation between two adjacent values. For this purpose QCC Hazorea has
developed program called “MABA-2000,” which can solve this problem.

Keywords: materials testing machines, measurements uncertainty, interpolation error,
calibration curve.

1.Introduction

According to [1] the process of calibration of force testing machines (tension and
compression) requires calculation of an expanded uncertainty of the results. For all of the four
accuracy classes of testing machines there are recommended maximum values of relative
expanded uncertainties [4, table 1]. One of the components for the calculation of combined
measurement uncertainties is the value of interpolation deviation.

The Accredited Laboratory Quality Control Center Hazorea (QCC) uses in its current
work of calibration of testing machines a set of measurement instruments, which are
calibrated according to [2]: load cells and digital unit device (amplifier) DMP-40 (HBM,
Germany). The performance of the calibration (comparison of actual force to reading of the
testing machine) requires previous definition in the memory of the amplifier tabular function

)(RfF = of calibration of the load cell, where F  is actual force (kN) and R  is electrical
signal (mV/V)

2.Discussion

According to [5], values of the force F as a function of electrical signal R are
calculated by the method of linear interpolation, i.e. the arc of characteristic curve of the
calibration function on a given section between two adjacent points n and n+1 is replaced by
linearized characteristic curve (figure 1).



Multiple experiments and observations being carried out in QCC reveal, that using a
linear mathematical model is possible under certain limitations. In some cases, for the
purpose of minimizing the value of interpolation deviation eal FF −=δ  (fig. 1), it is advisable
to replace the linear model by a polynomial interpolation.

Let us consider those limitations: The equation of chord, which passes through the
points ),( nn FR  and ),( 11 ++ nn FR :

nn

n

nn

n

RR
RR

FF
FF

−
−

=
−
−

++ 11

This proportion leads to the solution of the equation:
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The difference between the exact value of function )(Rf and its approximate value,
as defined by linear function (1) is:
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Where nnn FFF −= +1δ , nn RRh −= +1  and R - is the current value of the electrical
signal.
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Figure 1 - calibration curve



In order to find out the solution of function )(Rϕ  we must assume that the second
derivative of function )(Rf  in the interval [ ]1, +nn RR  is continuous (it is always continuous for
a polynomial curve) and thus following the in-equation:

MRf ≤)(''

Where M is the maximal value of second derivative function )(Rf  on the present interval.

The first and the second derivatives of )(Rϕ :
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Therefore
MR ≤)(''ϕ (3)

For the next discussion we will assume, that the calculated values of nF  and 1+nF  of the

polynom coincide with the values given in the calibration table (at the present assumption we
neglect the interpolation error, which according to [2] is known at each calibration point).
According to this assumption:

0)()( 1 == +nn RR ϕϕ (4)

Inside the interval nR , 1+nR  let us examine the point maxR , at which the absolute value of
function )(Rϕ  is maximal.
For the extreme analysis of this function we can expand it according to Taylor formula
(expansion by degrees):
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Where c is the point between current value R  and value maxR .

Since 0)(' max =Rϕ  the formula can be transformed to the next equation:
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Let us mark as R  the nearest point to maxR (rather nR  or 1+nR ). Then, according to
(4) and (5) we will accept the next equation:
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As far as the interval of values nR , 1+nR  )()( maxRR ϕϕ ≤  is in condition of evaluation
linearized interpolation error will be expresses by the in-equation:
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While using this formula for determination of the force F  as a function of electrical
signal R  we can establish the cases, in which the linear interpolation leads to additional
interpolation error, and increasing of the value of uncertainty measurement in accordance. In
such cases, as an alternative, it is recommended to use the approximation polynom of nd2 or
rd3 degree, which accompanies each calibration certificate of a load cell.

3. Experiment

The theoretical limitations (6) are confirmed by a number of experiments, which were
carried out in QCC for compression load cells. Measurement and error evaluation were
compared to another (reference) load cell. The force values mentioned in the tables below
are calculated by two different methods:

Table 1 Values of forces for load cell 200 kN

actF 25 30 35 105 110 115 185 190 195

polF 24.990 29.994 35.005 104.998 109.986 114.988 184.990 189.998 195.000

linF 24.978 29.984 34.994 105.000 109.991 114.991 184.996 189.996 194.999

Table 2 Values of forces for load cell 1 MN

actF 125 150 175 525 550 575 925 950 975

polF 125.017 149.946 174.938 525.015 550.053 575.043 925.000 950.006 975.019

linF 124.741 149.723 174.739 524.831 549.842 574.829 924.792 949.812 974.872

Table 3 Values of forces for load cell 50 kN

actF 6.25 7.50 8.75 26.25 27.50 28.75 46.25 47.50 48.75

polF 6.2478 7.4926 8.7387 26.2313 27.4868 28.7378 46.2439 47.4866 48.7400

linF 6.2471 7.4920 8.7384 26.2318 27.4877 28.7391 46.2436 47.4865 48.7400



Where  actF  - actual force i.e. measured by reference load cell (kN);

polF - computed force, using nd2 degree interpolation polynom (kN);

linF  - computed force, using linear interpolation (kN).
The data in tables 1 and 2 shows the reduction of interpolation error in cases where

the forces are calculated by mean of interpolation polynom of nd2  degree. Reducing of
interpolation error is especially prominent in the range of low loads. The data of table 3
convinces that usage of both methods leads to the same results.
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