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Abstrac t- The main goal of this paper is to introduce several definitions of noise floor and to show 
their application in ADC testing with regard to straightforward reading of some basic ADC parameters. 
The definitions and algorithms can be used for ADC standardization.  
 

I. Introduction 
 
Noise floor is a frequency spectrum parameter that is widely used in ADC testing although it has not 
been properly defined and described by a formula in any ADC standards yet. IEEE Std 1057-1994 does 
not mention the noise floor but it generally uses noise or noise level that is not defined. IEEE Std 1241-
2000 provides a formula for noise floor computation depending on the number of ADC bits; 
consequently, such noise floor corresponds to that of the ideal ADC and not to the reality. In the last 
version of DYNAD (version 3.3, Sept. 2000), the definition of the noise floor is the most precise. 
Harmonic components, gain and offset errors are not considered there when determining the noise floor 
and a formula for noise floor computation is also provided. Unfortunately, only white noise is used in 
this standard and spurious components are not considered there.  

The noise floor is commonly understood as the average (sometimes also maximal) power of 
random noise (i.e. the noise that is freed of any harmonic, spurious and DC components) in frequency 
spectrum. It implies that the noise floor determines the detection power level under which no weak 
signals can be discovered. It also determines power uncertainty of evaluation of any spectral 
component due to noise. So, the noise floor is important information in frequency domain. Once 
estimated, it can be used e.g. for the detection of strong spectral components. 
 

II. Noise floors 
 
When noise is the product of quantization, the noise floor can be derived using an ADC parameter, 
SNR—signal to noise ratio. If the ADC input signal is a sine-wave signal that spans the full-scale range 
of the converter, the SNR can be expressed using the well-known formula 

76.102.6)dBfs( += NSNR  (1) 

where N is the number of ADC bits. As the noise is assumed to be white, the value of the SNR 
determines the noise floor level. The SNR is often computed for the signal that does not fully cover the 
ADC full-scale range. In this case, the noise floor, NF, has to be corrected for the signal to full-scale 
ratio 
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When the signal of interest occupies a smaller bandwidth, BW, which is less than the Nyquist 
bandwidth, a digital filter can filter out the noise outside the bandwidth BW. In this case, the noise floor 
is increased by the factor called processing gain 
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where fs equals the sampling frequency. Typical example of a digital filter is the DFT algorithm. The 
DFT acts as a bank of digital filters each of bandwidth fs/M where M is the DFT length. So, the noise 
floor in the DFT spectrum is done by 
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Moreover, if a non-rectangular window is applied to the signal, this formula has to be corrected by the 
equivalent noise bandwidth, ENBW, of the window 
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Note that windowing decreases the leakage effect but it also decreases frequency resolution and it 
worsens the noise floor (ENBW ≥ 1). Thus, special care should be taken when choosing the window. 

Short analysis made above is the basis of the most definitions of the noise floors in ADC 
testing. In the following subsections, several various noise floors are proposed. All noise floor 
definitions are summarized in appendix at the end of this paper. 
 
A. Ideal noise floor 
 
As mentioned above, the definition of the noise floor according to the IEEE Std 1241-2000 
corresponds to the noise floor of an ideal N-bit ADC 
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Although this value is practically unreachable, if plotted in the amplitude frequency spectrum it shows 
the limitation of the used ADC (see Fig. 3). The difference between the actual and ideal noise floors 
also corresponds to the ratio of the actual and ideal noise. This ratio determines how many ADC bits 
are lost due to random noise (common noise floor) or noise plus distortion (effective noise floor). This 
information can be directly estimated from the frequency spectrum what is not commonly possible. 
 
B. Thermal noise floor 
 
However precise the ADC is, the noise floor is physically limited by the noise generated by the thermal 
agitation of the electrons. Such noise is called thermal, Johnson or Nyquist and its power can be 
computed as 

BWTKPthermal ⋅⋅=)W(  (7) 

where K is Boltzmann's constant (K=1.381·10–23 W/Hz/K) and T equals the absolute temperature in 
kelvins. The noise floor determined by the thermal noise at room temperature expressed in dBm units 
can be estimated as 

BWNFthermal 10log10174)dBm( +−= . (8) 

E.g. the thermal noise floor equals –174 dBm in 1 Hz bandwidth and –134 dBm in 10 kHz bandwidth.  
dBm units reflect the fact that the thermal noise floor is an absolute number unlike other noise 

floors that are expressed relatively to the ADC full-scale range. If ADC full-scale voltage, Ufs, and 
input resistance, R, are known, the thermal noise floor can be expressed in dBfs units as 
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In ADC testing, this conversion is needed for displaying the thermal noise floor in amplitude frequency 
spectrum of the sampled signal that is commonly plotted in dBfs units there. In case of sampled signal, 
the thermal noise bandwidth, BW, equals the Nyquist frequency, fs/2. If the amplitude frequency 
spectrum is computed by means of the DFT algorithm, the processing gain has to be added, too 
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The difference between the thermal and (dynamic) common noise floors equals the noise figure. A 
simplified diagram of several noise floors is shown in Fig. 1.  
 
C. Effective noise floor 
 
When the number of ADC bits in (6) is replaced by the effective number of ADC bits, the effective 
noise floor is obtained  
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This noise floor corresponds to overall ADC performance and if plotted in the amplitude frequency 
spectrum it offers a quick comparison with the common noise floor. If the effective noise floor is 
noticeably above the common noise floor, the overall ADC performance is considerably limited also by 
spurious and/or harmonic components.  
 
D. Common noise floor 
 
If the noise in amplitude frequency spectrum is freed of harmonic and spurious components, the 
average power of this noise corresponds to the common noise floor. In ADC testing, a parameter called 
the signal to non-harmonic ratio, SNHR, is frequently used. Accordingly, the SNHSR parameter can 
represent the signal to non-harmonic non-spurious ratio. Using this parameter, the common noise floor 
is given by  
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The common noise floor represents the average random noise power in frequency spectrum. 
The level of the common noise floor can be advantageously used for further data processing e.g. for 
distinguishing strong and weak components in the frequency domain. Unfortunately, strong spectral 
components are needed to be known and their power subtracted from random noise power before the 
computation of the common noise floor. 
 
E. Dynamic (common) noise floor 
 
The computation of the common noise floor by formula (12) assumes white noise. If the noise is 
colored, the noise level computed by this formula does not follow frequency dependence of random 
noise. Thus, it is advantageous to compute the common noise floor dynamically in dependence on 
frequency.  

The approximation by a simple polynomial is mostly sufficient. As the noise in dependence on 
frequency usually varies in logarithmic scale, the approximation is more precise when also done in 
logarithmic scale. Note that such approximation is biased due to the logarithm. If the variance of 
amplitude frequency spectrum is decreased by averaging (Welch method), the bias is essentially 
reduced. 
 

III. Recognition of strong spectral components 
 
After the dynamic noise floor is determined, strong spectral components can be recognized as the 
components bigger than a certain threshold above the dynamic noise floor. As already mentioned, the 
problem is that strong spectral components are needed to be known for the determination of the 
dynamic noise floor.  

 

 
Fig. 1.  Simplified diagram of noise floor levels 

 



A solution can be to search for 
strong spectral components and dynamic 
noise floor iteratively (see Fig. 2). In the first 
step, the number of significant harmonic 
components is estimated. The dynamic noise 
floor is computed from the averaged power 
spectrum freed of harmonic components. 
Strong spectral components can be 
recognized using a specific threshold, then. 
These components are excluded from the 
amplitude frequency spectrum for the next 
estimate of the dynamic noise floor. 
Fortunately, no iteration is mostly necessary 
and the number of iteration does not exceed 
two in practice because the noise power 
usually dominates the power of spurious and 
harmonic components. 

The proposed algorithm can be 
applied even for windowed signals. If several 
spurious components appear in narrow 
bandwidth, they can increase local dynamic 
noise floor. However, the dynamic noise 
floor can be decreased in next iteration(s); if 
not, the spectral character of spurious 
components is close to random noise in this 
bandwidth; consequently, they are also 
processed as random noise. 
 

IV. Examples 
 
The proposed noise floor definitions were applied on experimental data gained by acquisition by 
several different ADCs for pure sine-wave input signals. The acquired data were used for the 
computation of averaged power spectra (Welch method) from which amplitude frequency spectra were 
computed. Noise floors as well as the most important spectral parameters of the tested ADCs (SINAD, 
THD and SNHR) were estimated and shown in amplitude frequency spectrum. 

Fig. 3a shows the computed amplitude frequency spectrum of an AD7793 evaluation board. 
The overall ADC performance expressed by the SINAD is obviously given by dominating ADC noise 
(plus spurious components) as SINAD ≅ SNHR. This fact can also be directly estimated from no 
significant difference of the effective and common noise floor levels displayed in amplitude frequency 
spectrum. The only distinction between these two ways of estimation is that unlike the SNHR, the 
common noise floor does not contain the power of spurious components; their power is usually 
negligible in practice, though. 

The dynamic noise floor was gained by the approximation of 9th order polynomial. The order 
of nine was found out to be the best choice in practice. Lower orders do not approximate local average 
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Fig. 2.  Block diagram of the proposed algorithm 
 

a)  AD7793 evaluation board (16 bits, fs=500 Hz, 64 kSa) b)  PXI NI-5922 (24 bits, fs=10 MHz, 256 kSa) 

Fig. 3.  ADC noise floors plotted in amplitude frequency spectra 
 



power of noise well and higher orders react too quickly to any change in spectrum. Note good 
approximation of noise trend and significant difference of common and dynamic noise floors. 
Strong spectral components were found out in the frequency spectrum with the threshold of 8 dB from 
the dynamic noise floor. Weak harmonic components were signed by lighter color in the amplitude 
frequency spectrum. The optimal threshold level depends on random noise variance and the number of 
averages. In practice, the threshold in the range 6–10 dB is recommended. 

The level of the ideal noise floor shows that the actual ADC performance is much bellow its 
nominal resolution. Only at higher frequencies, the dynamic noise floor approaches the ideal noise 
floor due to strong ADC internal digital filtering. The thermal noise floor level indicates that the ideal 
noise floor is unreachable in this test configuration because of the thermal noise. 

Similar conclusions can be made in case of amplitude frequency spectrum of the PXI NI-5922 
digitizer shown in Fig. 3b. The effective noise floor level is noticeably above common noise floor. It 
means that the overall ADC performance is considerably influenced also by harmonic distortion. The 
dynamic noise floor is relatively close to the thermal noise floor, especially at low frequencies; this 
indicates a good ADC noise performance. Huge gap between the ideal and dynamic noise floors 
implies that much lower number of nominal ADC bits would be sufficient for the same ADC 
performance. 
 

V. Conclusion 
 
In this paper, several noise floors were characterized, defined and described by formulae. The usage of 
the noise floors was shown on practical ADC measurements and quick reading of some basic ADC 
parameters by means of noise floors was stressed. The application of the noise floor was shown on the 
detection of strong spectral components. 
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Appendix: Noise floor definitions 

 
Ideal noise floor 
Average power level of quantization noise of an ideal ADC in the frequency spectrum.  

Thermal noise floor 
Average power level of the noise generated by the thermal agitation of the electrons over a given 
bandwidth in the frequency spectrum.  

Effective noise floor 
Average power level of ADC noise, distortion and spurious components in the frequency spectrum.  

Common noise floor 
Average power level of the ADC noise without spurious and harmonic components in the frequency 
spectrum.  

Dynamic (common) noise floor 
Trend of average power level of the ADC noise without spurious and harmonic components in the 
frequency spectrum. 


